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Abstract: Operational risk has been great challenges of commercial banks and financial 

institutions since losses caused by operational risk have been significantly greater than 

ever before. In order to control and manage operational risk beter, clear awareness of the 

operational risk conduction mechanism is helpful to further understand the whole 
dynamic process of the risks affecting the banks. At large financial institutions, 

operational risk is gaining the same importance as market and credit risk in the capital 

calculation. Although scenario analysis is an important tool for financial risk 

measurement, its use in the measurement of operational risk capital has been arbitrary 

and often inaccurate. The fact that performant strategies of the financial institutions have 

programmes and management procedures for the banking risks, which have as main 

objective to minimize the probability of risk generation and the bank‟s potential 

exposure,we wants to present the operational risk measurement. Therefore, in this paper 

we presents the approach assumed by a financial institution with a precise purpose: the 

quantification of the minimum capital requirements of the operational risk.We 

implemented the model using discrete-event and Monte Carlo simulation techniques. 
Results from the simulation are evaluated to show how specific parameter changes affect 

the level of operational risk exposure for this company. 

Keywords: discrete-event simulation, financial regulation, Monte Carlo simulation, risk 

management, operational risk 

1. Introduction 

 
This paper focuses on the issues related to managing risk at the firm level as well 

as ways to improve productivity and performance. Evaluating Value at Risk 

Methodologies: Accuracy versus Computational Time. 
The paper also presents a new method for using order statistics to create 

confidence intervals for the errors and errors as a percent of true value at risk for 

each VAR method. This makes it possible to easily interpret the implications of 

VAR errors for the size of shortfalls or surpluses in a firm's risk based capital. 
Value at risk is usually defined as the largest loss in portfolio value that would 

be expected to occur due to changes in market prices over a given period of time 

in all but a small percentage of circumstances. This percentage is referred to as 
the confidence level for the value at risk measure. Value at risk‟s prominence 

has grown because of its conceptual simplicity and flexibility. It can be used to 

measure the risk of an individual instrument, or the risk of an entire portfolio. 
The purpose of this paper is to examine the tradeoffs between accuracy and 
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computational time The need to examine accuracy is especially poignant since 

the most recent Basle market risk capital proposal sets capital requirements 
based on VAR estimates from a firms own internal VAR models. Tradeoffs 

between accuracy and computational time are most acute when portfolios 

contain large holdings of instruments whose payoffs are nonlinear in the 

underlying risk factors because VAR is the most difficult to compute for these 
portfolios.  

 
Basel I , Basel II  

The Basel Committee on Banking Supervision, tried to develop a common 

framework, and this effort led to the Basel I Accord in July 1988. Basel I Capital 

Accord represented the first key coordinated effort by regulatorsto define a 
minimum and partially risk-sensitive level of capital for international banks. 

The cornerstone of the accord was the Cooke ratio (named for its promoter), 

requiring that the ratio between regulatory capital (RC) and the sum of risk-
weighted bank assetsbe equal to or greater than 8%: 

 

where Ai is a generic asset and RWi represents the corresponding risk weight, 

based on credit risk only. 

This was the fi rst move toward greater use of internal. 
In June 2004, the Basel Committee released the „Revised Framework for the 

International Convergence of Capital Measurement and Capital Standards‟. 

allowing “internationally active” banks to calculate regulatory capital using their 

own internal models – so called AMA (Advanced Measurement Approaches). 

Operational Risk Management (ORM). any system developed and implemented 

by a bank must be “credible and appropriate”, “well reasoned”, “well 

documented” and “transparent and accessible”. These questions are far from 

trivial. Banks are beginning to invest considerable sums of money and effort in 

developing the ORM systems necessary for Basel II. The Basel committee 

specified only that AMA models must be based on a 99.9th percentile 

confidence interval of a distribution constructed from internal and external loss 

data. 

 

Methods for Measuring Value at Risk. 

Value at risk (VaR) as the maximum potential loss that a business unit or a 

position can generate in a given time horizon within a defi ned percentage of 
potential scenarios (the so-called confi dence level), where extremely adverse 

scenarios are excluded.In formal terms, if V is the value of a given portfolio, 

is its initial value and  is the desired confidence level (e.g., 99%), then 
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(i.e., the amount off loss that can be exceeded only in a percentage of 

potential cases equal to ) is the amount such that  

or alternatively, since  represents a loss whenever , 

. The daily volatility is calculated as the standard deviation of the 

daily log return R of a given saaet  where  is the daily log 

return on day,  is the average daily return over the sample period and n is the 

number of daily returns in the sample. If the return distribution is normal (or 
Gaussian), then he would be able to derive VaR for his position in a very 

straightforward manner. The Gaussian distribution is in fact defined by only two 

parameters (its mean  and its standard deviation ), and its distribution function 

is . It can easily be shown that the probability of extracting 

a value in the range centered on the mean and whose half-

size is a multiple k of the standard deviation depends only on the multiple k. In 
fact, such probability is equal to  

. 

By substituting  one can easily obtain  

. 

We will measure value at risk over a fixed span of time (normalized to one 

period) in which positions are assumed to remain fixed many firms set this span 

of time to be one day. This amount of time is long enough for risk over this 

horizon to be worth measuring, and it is short enough that the fixed position may 
reasonably approximate the firm‟s one-day or overnight position for risk 

management purposes. 

Denote  as the value of portofolio V at time t with instruments  and 

instrument prices  and denote  as the change in portfolio 

value between period t and t+1.  The cumulative density function of 

 conditional on  and t information  is: 

. 

This allows the inverse cumulative density function for   to 

be defined as: 

 

Value at risk for confidence level u is defined on terms of the inverse cumulative 

density function of  : 

. 

In words, value at risk at confidence level u is the largest loss that is expected to 

occur 
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except for a set of circumstances with probability u. This is equivalent to 

defining value at risk at confidence level u as the u‟th quantile of the ditribution 

of  given . 

The definition of VAR highlights its dependence on the function  which is a 

conditional function og the instruments  and the information se . 

Value at Risk methods attempt to implicitly or explicitly make inferences about 

 in a in a neighborhood near confidence level u. In a large portfolio 

depends on the joint distribucion of potentially tens of thousands of different 

instruments. This makes it necessary to make simplifying assumptions in order 
to compute VAR; these assumptions usually take three forms. First, the 

dimension of the problem is reduced by assuming that the price of the 

instruments depend on a vector of factors ƒ that are the primary determinants of 
changes in portfolio value.This allows changes in portofolio value to be 

expressed as  where . Second,  is 

usually approximated instead of being calculated explicitly. Finally, convenient 

functional forms are often assumed for the distribution of . 
Each of these simplifying assumptions is likely to introduce errors in the VAR 

estimates. The first assumption induces errors if an incorrect or incomplete set of 

factors is chosen; the second assumption introduces approximation error; and the 

third assumption introduces error if the wrong distribution of  is chosen. The 

first and third assumption introduces error if the wrong distribution of  is 

chosen.  

methods use Monte-Carlo simulation to compute value at risk. Their advantage 
is they are capable of producing very accurate estimates of value- at-risk, 

however, these methods are not analytically tractable, and they are very time and 

computer intensive. 
 

Monte-carlo methods 

Monte Carlo Simulation includes any statistical sampling technique used for 

approximate quantitative problems solutions. 

A model or a real system or situation is developed and this model contains 

certain variables. These variables have different probable values, represented by 

a probability distribution function values for each variable. monte carlo method 

simulates the complete system many times (hundreds or even thousands times), 

each time randomly selects a value for each variable from occasional its 

probability distribution. The result is a probability distribution of the total value 

of the system calculated by the model.  

Monte carlo is a technique that simulates cost estimates or the timing of the 

fulfillment of specific works many times using input values selected at random 
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from the probability distributions of  possible costs or the likely duration to 

clculate a distribution of possible total cost of the project or full time to the 

competion of the project possible. 

The next set of approaches for calculating value at risk are based on Monte-

Carlo simulation. 

Monte Carlo simulation works by using a series of random draws of the factor 

shocks . These shocks combined with some approximation method are 

used to generate a random series of changes in portofolio value . The 

empirical cumulative density function of the changes in portofolio value, , is 

then used as a proxy for G, and  is the corresponding estimate of VAR at 

cofidence level u. 

The Monte-Carlo methodologies considered here allow for two methods for 

approximating changes in protfolio value and methods of parameterizing the 

distribution of .  These approaches can be combined. 

The first approximation method is the full Monte-Carlo method. This method 

uses exact pricing for each Monte-Carlo draw, thus eliminating errors from 

approximations to . Since this method involves no approximation error, , 

the full Monte-Carlo estimate of G converges to G in probability as the sample 
size grows provided the distributional assumptions are correct. Consequently, 

 converges in probability to true value at risk at confidence level u. 

Because this approach produces good estimates of VAR for large sample sizes, 
the full Monte-Carlo estimates are a good baseline against which to compare 

other methods of computing value at risk. The downside of the full Monte-Carlo 

approach is that it tends to be very time-consuming, especially if analytic 

solutions for some assets prices don‟t exist. 
The second approximation method is the grid Monte-Carlo approach. In this 

method a grid of realizations for  (for N factors, this would involve an N 

dimensional grid) is created and the change in portfolio value is calculated 
exactly for each node of the grid. To make approximations using the grid, for 

each Monte-Carlo draw, the factor shocks should lie somewhere on the grid, and 

changes in portfolio value for these shocks can be estimated by 

interpolating from changes in portfolio value at nearby nodes. 
Grid-Monte-Carlo Methods suffer from a curse of dimensionality problem since 

the number of grid points grows exponentially with the number of factors. To 

avoid the dimensionality problem, I model the change in the value of an 
instrument by using a low order grid captures the behavior of factors that 

combined with a first order Taylor series. The grid generate relatively nonlinear 

changes in instrument value, while the first order Taylor series captures the 
effects of factors that generate less nonlinear changes. 
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Suppose H is a financial instrument whose value depends on two factors, , and 

. In addition suppose H is highly nonlinear in  and nearly linear in . Define 

 as the change in  over the next period and  as the change in . Then the 
change in Hbetween today and tomorrow is an implicit function of the change in 

the factors and can thus be written as . If  was approximated on a 

grid using 10 values of  and ten values of  then the grid would contain 100 
points and just computing the points on the grid would be computationally 

intensive. Below, we model changes in value due to changes in  on a grid and 

model changes in value due to  using a first order Taylor series. More 

specifically: 

 

 

 

Where  . 

 

Confidence Intervals from Monte-Carlo Estimates. 

To construct a 95% confidence interval for the p‟th percentile of G using the 

results from 

Monte-Carlo simulation, it suffices to solve for an r and s such that: 

 

and such that: 

 

Then the order statistics X(r) and X(s) from the Monte-Carlo simulation are the 

bounds 

forthe confidence interval. 

 

Measuring the Accuracy of VAR Estimates. 

Estimates of VAR are generally not equal to true VAR, and thus should ideally 

be accompanied by some measure of estimator quality such as statistical 
confidence intervals or a standard error estimate. This is typically not done for 

delta and delta-gamma based estimates of VAR since there is no natural method 

for computing a standard error or constructing a confidence interval. 
In Monte-Carlo estimation of VAR, anecdotal evidence suggests that error 

bounds are typically nor is controlled somewhat by making Monte-Carlo draws 

until the VAR estimates do not change significantly in response to additional 

draws. This procedure may be inappropriate for VAR calculation since value at 
risk is likely to depend on extremal draws which are made infrequently. Put 
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differently, value at risk estimates may change little in response to additional 

Monte-Carlo draws even if the value at risk estimates are poor. 
Although error bounds are typically not provided for full Monte-Carlo estimates 

of VAR, it is not difficult to use the empirical distribution from a sample size of 

N Monte-Carlo draws to form confidence intervals for Monte-Carlo value at risk 

estimates (we will form 95% confidence intervals). Given the width of the 
interval, it can be determined whether the sample of Monte-Carlo draws should 

be increased to provide better estimates of VAR. The confidence intervals that 

we will discuss have the desireable properties that they are nonparametric (i.e. 
they are valid for any continuous distribution function G), based on finite sample 

theory, and are simple to compute. There is one important requirement: the 

draws from the distribution of  must be independently and identically 

distributed. The confidence intervals for the Monte-Carlo estimates of value at 
risk can also be used to construct confidence intervals for the error and 

percentage error from computing VAR by other methods. These confidence 

intervals are extremely useful for evaluating the accuracy of both Monte-Carlo 
methods and any other method of computing VAR.  

 

The use of confidence intervals should also improve on current practices of 
measuring VAR error. The error from a VAR estimate is often calculated as the 

difference between the estimate and a Monte-Carlo estimate. This difference is 

an incomplete characterization of the VAR error since the montecarlo estimate is 

itself measured imperfectly. The confidence intervals give a more complete 
picture of the VAR error because they take the errors from the Monte-Carlo into 

account.Table 1 provides information on how to construct 95% confidence 

intervals for monte carlo estimates of VAR for VAR confidence levels of one 
and five percent. To illustrate the use of the table, suppose one makes 100 iid 

Monte-Carlo draws and wants to construct a 95% confidence  two interval for 

value at risk at different ways. Then, the upper right column of table 1 shows 
that the portfolio loss from the Monte-Carlo simulations and the 10th largest 

portfolio loss 95% confidence interval for true value at risk. The parentheses 

below these figures the confidence bounds in terms of percentiles of the Monte-

Carlo distribution. Hence, the first percentile and 10th percentile of the Monte-
Carlo loss distribution bound the 5th percentile of the true loss distribution with 

95% confidence when 100 draws are made. 

 
Table 1 
NumberofDraws Value at Risk CofidenceLevel Value at Risk 

CofidenceLevel 

 1% 5% 

 LowerBoundUpperBound LowerBoundUpperBound 
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100          -                    - 

         -                          - 

           1                    10 

        (1%)               (10%) 

300 
 

1 11                               
      (0.33%)               (3.67%) 

           8                     23 
        (2.7%)             

(7.7%) 

500 1 10     

      (0.2%)                  (2.0%) 

          15                     35 

        (3.0%)              

(7.0%) 

1,000         4                           17  

       (0.4%)                  (1.7%) 

           37                     64 

        (3.7%)               

(6.4%) 

10,000         81                         120 

       (0.81%)                 (1.2%) 

           457                    

544 

        (4.57%)              

(5.44%)   

50,000         456                        545 

       (0.912%)                (1.09%) 

           2404                  

2597 

        (4.81%)               

(5.19%) 

100,000         938                         1063 
       (0.938%)                (1.063%) 

           4865                  
5136 

         (4.865%)            

(5.136%) 

250,000        2402                        2599 

       (0.9608%)               (1.0396%) 

           12,286                

12,715 

          (4.9144%)         

(5.086%) 

500,000        4862                        5139 

       (0.9742%)               (1.0278%) 

           24,698                

25,303 

          (4.9396%)        

(5.0606%) 

1,000,000        9805                         10196 

       (0.9805%)               (1.0196%) 

           49,573               

50,428 

          (4.9573%)        
(5.0428%) 

 

Table 1 provides upper and lower bounds for larger numbers of draws and for 
VAR confidence levels of l% and 5%. As one would expect, the table shows that 

as the number of draws increase the bounds, measured in terms of percentiles of 

the Monte-Carlo distribution, tighten, so that with 10,000 draws, the 4.57th and 
5.44th percentile of the Monte-Carlo distribution bound the 5th percentile of the 

true distribution with 95% confidence. 

Table 1 can also be used to construct confidence intervals for the error and 
percentage errors from computing VAR using Monte-Carlo or other methods. 
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Computational Considerations. 

Risk managers often indicate that complexities of various VAR methods limit 

their usefulness for daily VAR computation. The purpose of this section is to 

investigate and provide a very rough framework for categorizing the complexity 

of various VAR calculations.  

Computations involved in approximating the value of the portfolio and its 
derivatives. This type can be further segregated into two groups. The first are 

complex computations that involve the pricing of an instrument or the 

computation of a partial derivative such as . 

I also make assumptions about the number of complex computations that are 
required to price an instrument. In particular, I will assume that the pricing of an 

instrument requires a single complex computation no matter how the instrument 

is actually priced. 
The amount of time that is required to calculate VAR depends on the number 

and complexity of the instruments in the portfolio, the method that is used to 

calculate VAR, and the amount of parallelism in the firms computing structure. 
Let V denote a portfolio whose value is sensitive to N factors, and contains a 

total of I different instruments. An instrument‟s complexity depends on whether 

its price has a closed form solution, and on the number of factors used to price 

the instrument. For purposes of simplicity, I will assume that all prices have 
closed form solutions, or that no these extreme cases. Instruments have closed 

form solutions, and present results for both of To model the other dimension of 

complexity, let ,denote the number of different instruments whose value is 
sensitive to n factors. It follows that the number of instruments in the portofolio 

is . 

The number of complex computations required for the delta approach is: 

 

Similarly, the number of complex computations required for all of the delta-

gamma approaches is equal to: 

 

The grid-Monte-Carlo approach prices the portfolio using exact valuation at a 

grid of factor values and prices the portfolio at points between grid values using 

some interpolation technique (such is linear). For simplicity, i will assume that 
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the grid is computed for k realizations of each factor. This then implies an 

instrument that is sensitive to n factors will need to be repriced at  grid points. 
This implies that the number of complex computations that is required is: 

 

The number of computations required for the grid Monte-Carlo approach is 

growing exponentially in n. For even moderate sizes of n, the number of 
computations required to compute VAR using grid-Monte-Carlo is very large. 

The number of complex computations required for one instrument using the 

modified grid Monte-Carlo approach is  if the firs derivatives in the 

taylor series are computed analytically, and  if they are 
computed numerically.  

The number of complex computations required in the modified grid Monte-

Carlo approach with a grid consisting of k realizations per factor on the grid is: 

 

Finally, the number of computations required for the exact pricing Monte-Carlo 

approach (labelled Full Monte Carlo) is the number of draws made times the 

number of instruments that are repriced: 

 

Only one simple computation is required in the delta approach and in most of the 

deltagamma approaches. The number of simple computations in the grid Monte-
Carlo approach is equal to the expected number of linear interpolations that are 

made. 
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