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Abstract 

As a set of modern successful iterative methods in numerical linear algebra, Krylov 

subspace methods are currently used to solve large systems of linear equations. The 

Induced Dimension Reduction (IDR) method was developed in 1979 by Peter 

Sonneveld. In 2007 Sonneveld and van Gijzen reconsidered IDR and generalized it to 

IDR(s). The paper explains why IDR approach differs from traditional approaches to 

Krylov subspace methods. IDR is a transpose free method based on the Lanczos 
approach for non-symmetric linear systems, successor of the Biconjugate Gradient 

(BiCG) method of Lanczos and predecessor of BiCGStab method. Based on the latter we 

also present the differences between IDR and BiCGStab method (or similar methods). 

Finally, some numerical result of the method are shown through different experiments 

that point out theoretical properties. 

Key words: Numerical Analysis, Krylov Subspaces, IDR(s), CG Method, BiCGStab 

method. 

1. Introduction 

Let  be a linear system where the general system matrix , 

and  the initial approximation of the solution with its initial residual 

approximation . The Krylov subspace approach generates solutions 

 by the recursion: 

     (1.1) 

where  is the -th Krylov subspace 

generated by  from .  

Since  (or  if the data are real) and based on relation (1.1) for 

the -th residual  we have the implication: 

   (1.2) 

The purpose is to find the approximation with short recursions very close the 

real solution  in few iterations (based on the limited computer memory). Also 

to approximate , as small as possible, by elements of . This implies that 

we have to choose  as the perpendicular  into its orthogonal projection into 
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, based on the minimum norm residual approach [3]. Which is the basis of 

the Conjugate Residual (CR) Method for Hermitian systems (very similar to the 
conjugate gradient method, with similar construction and convergence 

properties) or its variations GCR (Generalized Conjugate Residual) & GMRes 

(Generalized Minimal Residual) methods, more appropriate for Non-Hermitian 

systems [9] [10]. For this methods we have: 

    (1.3) 

Some other Krylov subspace methods are based on other orthogonal or oblique 

projections. For example Conjugate Gradient (CG) method, 

     (1.4) 

or the Bi-Conjugate Gradient (BiCG) method based on the projection below: 

   (1.5) 

where  is an arbitrary initial vector called the shadow vector and 

 in the -th Krylov subspace generated by  the complex 

conjugate transpose of , from initial shadow residual . In general is used 

matrix  and  are called the left Krylov subspaces [2] [3].   

The vectors from Krylov subspaces can be described in terms of polynomials: 

Consider  the space of polynomials of degree at most  and by relating again 

to (1.1)  

   (1.6) 

Implying that  residual polynomials that are normalized by the 

condition  such that satisfy:  

      (1.7) 

Since . This means that the 

residual norm  is small if  is small at the eigenvalues of . The 

residuals in the BiCG method are defined as in (1.7) while the residuals in 

Conjugate Gradient Squared (CGS) method are defined by 

      (1.8) 

In this case the residual polynomials of CGS are the squared of BiCG residual 

polynomials. It is obvious that at a certain eigenvalue when  then 

 is even much smaller [5] [9]. 
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2. The IDR approach and IDR(s) 

Consider  a linear system where the general system matrix , 

and  the initial approximation of the solution with its initial residual 

approximation . Let  be the complete Krylov subspace  

and  a linear subspace of codimention  (  in case  is a 

hyperplane of  ) such that  contains no eigenvectors of . The 

recursion 

  (2.1) 

defines the IDR subspaces  for an arbitrary  and  non zero scalars that 

are chosen in order to boost convergence. This means that IDR subspaces are 

nested: 

 for      (2.2) 

that in a finite number of steps they reduce to the null space  for some 

, due to the mild restrictions of the hyperplane , so . The approach 
of Sonneveld and van Gijzen is based on a geometric understanding, namely, the 

IDR theorem [8]. 

Let define  the dimension of   as well , then  is 

represented by  linear equations likely to be linear independent but 

we can’t generalize the property since  actually depends on . 

 
Figure 2.1: Case , the spaces . 

The IDR theorem can be applied by generating  residuals  that are forced 

to be in the subspaces , where  is nondecreasing with increasing .  

,       (2.3) 
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Then under the assumptions of IDR theorem, the system will be solved after at 

most  dimension-reduction steps. The recursion for the residuals is: 

  (2.4) 

To generate  we need search directions vectors . To 

generate we need to intersect an -dimensional affine subspace of 

with the subspace  represented by  homogeneous linear equations that we 

may write as  with an  matrix  whose columns 

are form a basis of  (recall  is the Shadow space of dimension ). 

Also we can represent  -dimensional affine subspace of with a linear 

combination of  for example last computed residuals  in , 

hence  can be computed as: 

   (2.5) 

for a fixed (usually ), , 

 and vector  such as 

, since we want to enforce  we enforce  

meaning . This means that calculating the first vector in  are 

required  vectors in  and we expect  to be in  only for 

.  

Referring to (2.5) and (2.5) we can calculate residuals: 

  (2.6) 

This formula manifests that IDR(s) differs considerably from most commonly 

used Krylov subspace methods such as CG, BiCG, or GCR. The difference is 

that in (2.6) not only  is multiplied by  but also . 

We may choose  freely in the calculation of the first residual  in  but 

the same value must be used in the calculations of the subsequent residuals in 

. A suitable choice for  according to (2.4) is the value that minimizes 

 the norm of  similarly as is done in the Bi-CGStab method [5]. We 

choose such that : 

,   for   and  for  (2.7) 

Now to approximate the solutions  it is not sufficient to just approximate 

residuals  and search direction . We also need to approximate ‘intermediate’ 

iterates  such that  ‘intermediate’ residuals. 

All the required updates are [5]: 
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 (2.8) 

where  lead us to the analog recursion of (2.6) for 

: 

  (2.9) 

where . 

 

3. Polynomial representations 

In section 2 we saw that IDR can be generalized: instead of using one 

hyperplane  one uses the intersection of  hyperplanes. This makes the 

dimension reduction step less frequent but the reduction a larger one. The 

generalized IDR, described as IDR(s), was developed in 2006 by Peter 

Sonneveld and Martin van Gijzen [8]. In the context of Krylov subspace 
methods, IDR(s) can be thought of as a two-sided Lanczos method. The 

dimension reduction is viewed as the basic force behind IDR and gave the 

method its name. However, dimension reduction in Krylov subspace methods is 
not at all a unique feature of IDR. In fact, projection based methods can be 

understood in a similar way. For example the relation (1.5) of the BiCG 

residuals in the first section can be brought as: 

  (3.1) 

The same approach can be used in other similar methods as CR, GCR or 

GMRes: 

   (3.2) 

What is different in IDR is that  is not an orthogonal complement of a Krylov 

subspace. However, due to the form of the recursion for  turns out to be the 

image of an orthogonal complement of a Krylov subspace. 

Let us refer again to the polynomial description, in order to analyze the 

dimension reduction and comperation to other similar Krylov subspace methods. 

IDR(s) is a Lanczos-type product method, that is most residuals can be written 

as (according to (2.8) and (2.4) in section 2): 

,   (3.3) 

where ,  and 

. Generally for ,   and 

 with dimension .  
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We recall that in BiCG  and shadow residuals 

, , where  denote the polynomial obtained 

fromLanczos residual polynomials  by complex conjugation of coefficients. 

Also search directions  and shadow search directions 

,  where  are the search directions 

polynomials and the polynomials obtained from  by complex conjugation 
of coefficients. From the recursions of these four set of vectors it is derived the 

polynomials recursion [1]: 

    (3.4) 

In case , the subspace  is hyperplane determined by a single vector

,   (hence  has only one column), we can express the IDR residuals and 
IDR search directions in terms of the Lanczos residual polynomials as [4]: 

 (3.5) 

 (3.6) 

where  and  another 

residual polynomial of degree  that represents  such as 

. The polynomials recursion for IDR(1) are: 

(3.7) 

where  has to be chosen such that , : 

, we use matrix  in case   (3.8) 

In BiCGStab method residuals have the recurrence , 

[1][2].Here we get the relationship between even IDR(1) residuals and 
BiCGStab: 

  (3.9) 

According to (3.4) and (3.7) resurrections we express the odd IDR(1) residual in 

terms of quantities from BiCGStab by [4] [5]:  

 (3.10) 
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Figure 3.1: The connection between IDR(1) and BiCGStab. 

While BiCGStab implicitly constructs  by enforcing a bi-orthogonality 

condition on a polynomial that lies on the line determined by  and , IDR(1) 

first generates by the second recursion in (3.7) the polynomial  that lies on 

that line and then also enforces this condition: 

   (3.11) 

4. Numerical experiments 

The algorithm used is an almost direct translation of the IDR theorem. IDR(s) 

algorithms are quite sensitive to round-off errors. 

To illustrate the equivalence of  BiCGStab and IDR we consider the following 

experiments: First as matrix  we choose from the MATRIX MARKET 

collection of Matlab the Sherman4 matrix (a real unsymmetric matrix  of size 

) and a right-hand side vector corresponding to a solution vector 

that consists of ones. We have only plotted the residual norms at every -st 

step and the BiCGStab residual norms basically coincide with the IDR residual 

norms at these very steps. Both methods (for ) use the recursively updated 
residual tocheck for convergence [7]. Figure 4.1 displays for both methods the 

norm of the true residual (scaled by the norm of the right-hand side vector) 

 as function of the number of MATVECs.  

 
Figure 4.1: IDR(4) and BiCGStab(4) convergence for Sherman4.  



 
 
117                                                                                                             Buletini Special 2015 

 

IDR(s) and Bi-CGSTAB require basically the same number of MATVECs for 

the same dimension of the shadow space, which Table 4.1 confirms the 
mathematical equivalence between the methods: 

 
Table 4.1: Number of MATVECs to solve the SHERMAN4 system such that  

of the updated residual is less than . 

We have also included GMRES MATVECs and IDR(s) and BiCGStab are very 

close to this number. 

Now let us take another example, the problem of 3D convection-diffusion-

reaction problem, described by partial differential equations on the unit cube 

 with Dirichlet boundary conditions: 

  (4.1) 

The vector  is defined by the solution:  

  (4.2) 

Using the Finite Differences Method, (4.1) is discretized using second/first order 

central differences for the diffusion and the convection term. Solving the 

implicit scheme, we have 125,000 equations, including boundary points. 

This is a problem of interest since BiCGStab does not work well, due to the 

strong nonsymmetry of the system matrix. This matrix has eigenvalues with 

large imaginary parts.  
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Figure 4.2: Convergence for IDR(s) (with real  and ), Bi-CGSTAB and 

GMRES. 

The convergence curves of IDR(s) are in between the convergence curves of 

GMRES and BiCGStab, and are increasingly closer to the GMRES curve for 

higher . The iterative process is over when  of the updated residual is 

less than . The figure shows the poor convergence behavior of BiCGStab 

for this problem, and as can be expected also for IDR(1). Increasing  

significantly improves the convergence behavior of IDR(s). However, compared 

with the optimal convergence of GMRES, the rate of convergence is still rather 

poor.  

5. Conclusions 

Transpose free CGS, BiCG, BiCGStab methods, unlike GMRES, they do not 

find the approximate solutions with smallest residual norm. In contrast to 
GMRES, these methods use short recurrences (Lanczos approach), and as a 

result are often much more efficient both with respect to memory and to 

computations, for problems where GMRES needs many iterations to find a 

sufficiently accurate solution.  

Efforts of finding appropriate approximate solutions have mainly focused on 

constructing residuals with small or smallest norm. For instance, for symmetric 

systems (i.e. ), CR constructs residuals with smallest Euclidean norm, 

while the residuals for CG  have smallest . Bi-CG has been viewed as a 

CG process with respect to a quadratic form rather than an inner-product, and 

residuals were considered to be ‘minimized’ with respect to this quadratic form.  

An alternative approach has been taken, the construction of the IDR, ‘squeezing’ 

the residuals to zero. The IDR method finds residuals in a sequence of shrinking 

subspaces. BiCG can also be viewed in such a perspective. BiCG residuals 

belong to a sequence of growing Krylov subspaces, but they also belong to a 
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sequence of shrinking subspaces: BiCG uses so-called ‘shadow’ Krylov 

subspaces for testing, that is, the residuals are constructed to be orthogonal to 
this sequence of growing shadow spaces.  

The starting point for the IDR construction is more abstract, more elegant than 

for BiCG. Residuals are constructed in IDR spaces . Here,  is a fixed proper 

subspace of  that are defined recursively by . If  has no eigenvector that is 

orthogonal to the subspace , then ⊂  and the dimension of  reduces 

with increasing . The hyperplane  consists of all vectors orthogonal to some 

random sharow residual vector , IDR(1). For  the IDR concept allows 

incorporation of a space of vectors orthogonal to all columns of a  shadow 

residual matrix . Unlike CR, GCR and BiCG, IDR differs since   is not an 

orthogonal complement of a Krylov subspace.  

For small values of  for example , even for very complicated linear 

equations, IDR(s) often achieves almost the same convergence as GMRES, 

which means, comparable accuracy for the same number of MVs [10]. However, 
the additional costs per MV in IDR are modest and limited (as with Bi-

CGSTAB), whereas these costs in GMRES grow proportional to the iteration 

step [8]. Therefore IDR(s) method provides a more cheap and reliable alternative 

for full GMRES. Since for a wide range of problems and Krylov dimensions, 

. The Lanczos approach is determined completely 

by the choice of , whereas the IDR approach depends also on the choice of the 

 parameters (2.4). 

IDR(s) method has favorable features such as: uses short recurrences since is a 
Lanczos method, hence uses a small number of vectors for the process and a 

limited amount of memory. IDR(s) computes the exact solution in at most  

steps (matrix-vector multiplications) in exact arithmetic (BiCGStab needs 

exactly  steps) and at most  matrix-vector multiplications. 

In IDR(s) there is also some freedom in choosing the  ‘intermediate" iterates 

and residuals because, the vectors  in (3.3) need to satisfy only the weaker 

block orthogonality condition  unlike other methods ML(s)BiCG. 

With the IDR approach, such vectors can be obtained with much simpler 

recursions, and in addition, allow considerable flexibility to the algorithm. We 

recall that the “intermediate" residuals  as mentioned in (2.8) do not exist in 

BiCGStab. 

BiCG, CGS, BiCGStab, and BiCGstab(ℓ) are essentially based on the 

computation of two mutually bi-orthogonal bases for the Krylov subspaces 
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 dhe . On the other hand, the IDR method generates 

residuals that are forced to be in subspaces  ’s of decreasing dimension.  

As seen in section 4 the generalized BiCGStab method and IDR(s) produce the 

same residuals every -st step and the BiCGSTAB residual norms basically 

coincide with the IDR residual norms at the same steps, until numerical effects 
start to play a role. IDR(s) and BiCGStab basically require the same number of 

MVs for the same dimension of the shadow space, which confirms the 

mathematical equivalence between the methods. All even IDR(1) 
approximations, requires that all BiCG residuals exists, and therefore any serious 

Lanczos breakdown cause BiCGStab and IDR(1) to break down at the same 

time. A breakdown for both methods might be due to  since the choice of 

the parameters  is the same in both methods. Increasing  also yields a 

significant decrease in the number of iterations. IDR(s), for higher dimensions, is 
superior to BiCGStab (very sensitive to perturbations) and more stable.  

6. Further work 

There is also the possibility to extract eigenvalue information from the 

recurrence coefficients constructed in IDR method for large sparse matrices: 

.     (6.1) 

The obvious reason is to showcase that IDR can be used to compute eigenvalues, 

so without the need for the transpose of  and using recurrences of length  [6]. 

The IDR residual polynomials are the products of a residual polynomial 

constructed by successively appending linear smoothing factors and the residual 

polynomials of a two-sided (block) Lanczos process with one right-hand side 
and several left-hand sides. The Hessenberg matrix of the OrthoRes version of 

this Lanczos process is explicitly obtained in terms of the scalars defining IDR 

by deflating the smoothing factors. The eigenvalues of this Hessenberg matrix 

are approximations of eigenvalues of the given matrix or operator, while the 
pencil of the generalized Hessenberg decomposition directly produced by IDR(s) 

also contains eigenvalues that just represent the chosen moothing parameters [4] 

[6]. 

Experiments with eigenvalue computations based on other IDR(s) variants 

indicated that these methods deteriorate in finite precision; in contrast to other 

Krylov subspace methods based on short recurrences, we observe no multiple 

Ritz values, but ghost Ritz values at the roots of the stabilizing polynomials. 
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