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Abstract: This article contains the bootstrap methods to test the equality of means of 

two random samples. Such a problem is called a two-sample problem. This method can 

be used even when both random samples have not a normal distribution or when are not 

paired. We have given the algorithms for computation of the achieved significance level 

of the test, are constructed from Bradley Efron, who is the first person to treat bootstrap 
methods. We have used R program to get results. We have simulated data of two known 

normal random samples to compare results with results that are given from bootstrap 

methods. A way to judge the acceptance or reject the null hypothesis we use the p- 

values. This method can be used even for many other hypothesis tests which we have not 

treated in this article. 
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Introduction 

We observe two independent random variables X  and Y drawn from possibly 

different probability distributions F and G . 1 2( , , ..., )nX X X X  and 

1 2( , , ..., )mY Y Y Y .We wish to test hypothesis 0H  of no difference between 

F and G ,       0 :H F G (1) 

The equality F G  means that F  and G  assign equal probabilities to all sets, 

Pr { } Pr { }ob A F ob A G  for any subset of the common sample space of the 'X s  

and 'Y s .  If 0H  is true, then there is no difference between the probabilistic 

behavior of a random X  or a randomY . In the first part of the article is given 

the known cases of statistics. In the second part of the article is given the 

achieved significance level and bootstrap methods for hypothesis test. Finally I 
have taken some results using R program. 

1. Random variables have normal distribution 

We wish to test the null hypothesis 0H : X Y  versus :A X YH .  
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a) If 
2

~ ( , )X XX N  and 
2

~ ( , )Y YY N  , the variances are known. In this case 

we can use criteria
2 2

X Y

X Y
Z

n m

 , when null hypothesis 0H is true, Z  has 

standard normal distribution. Allowed area is ] , [
/2 /2

z z , 

where ( ) (1 ) / 2
/2

z ,  the Laplace’s function,  the level of 

significance. 

b) If 
2

~ ( , )X N x x  and 
2

~ ( , )Y N y y  , the variances are unknown but 

equal
2 2

( 2)

( 1) ( 1)

X Y nm n m
T

n mn s m sx y

~ ( 2)S n m , where 0H is true. 

Allowed area is ] , [
/2 /2

t t , where /2
t  is found in table of student 

distribution with / 2  and 2n m degree of freedom. 

c) If X  and Y are paired, then we put random variable Z X Y , where 

i i iZ X Y , 1,...,i n . Now we have 
2 2

( , )X Y X YZ N  which can 

treated as in the case “one sample”, student criterion.  

d) Variances are unknown and unequal. We can use Welch criterion. 

2 2

X Y

X Y
T

s s

n m

 0( )S n , where  

0

2
2 2

2 2
2 2

/ /

/ / 1 / / 1

s n s mX Y
n

s n n s m mX Y

 

2.  Hypothesis testing with the bootstrap 

In all cases treated with the above assumptions we had about random variables 

to come from a normal distribution.  

In this part we describe how bootstrap methods can be used to produce 

significance tests. The basic idea to test the hypothesis with the bootstrap 

method is to test the hypothesis, without mathematical assumptions.  
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The simplest situation involves a simple null hypothesis 
0

H  which completely 

specifies the probability distribution of the data. Thus, we are dealing with a 

single sample 1 2( , , ..., )nX X X X  from a population with CDF (cumulative 

distribution function) F , then 0H  specifies that 0F F , where 0F  contains no 

unknown parameters, for example “exponential with mean 1”. The more usual 

situation in practice is that 0H  is a composite null hypothesis, which means that 

some aspects of F  are not determined and remain unknown when 0H  is true. 

An example: “normal with mean 5”, the variance of the normal distribution 
being unspecified. 

We observe two independent random samples 1 2( , , ..., )nX X X X  and 

1 2( , , ..., )mY Y Y Y drawn from possibly different probability distribution F and 

G .  

An example would be the data:  measurements for cholesterol before treatment 
and after treatment. 

 

Fig1. Box plot for cholesterol data. 

The difference of the means, ˆ x y =32, encourages us to believe that the 

treatment distribution F  gives effect in lowering cholesterol. If we cannot 

decisively reject the possibility that 0H  is true, then we have not successfully 

demonstrated the treatment is effectively. 

In our case the test statistic ˆ  is the difference of means. We will assume here 

that if the null hypothesis 0H  is not true, we expect to observe larger values of 
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ˆ , than if 0H  is true. All we say that the larger the value of ˆ  we observe, the 

stronger is the evidence against 0H . 

The achieved significance level 

The achieved significance level (ASL) of the test is defined to be the probability 

of observing at least that large a value when the null hypothesis is true (Bradley 
Efron) 

0

*ˆ ˆPr { )ASL ob H (2) 

The quantity ˆ  is fixed at its observed value. The random variable 
*ˆ  has the 

null hypothesis distribution, the distribution of ˆ  if 0H  is true. The star notation 

differentiates between the actual observation and a hypothetical generated 

according to null hypothesis. Where ASL is less than 0.1, we have borderline 

evidence against 0H , if ASL<0.05 reasonably strong evidence against 0H , if 

ASL<0.025 strong evidence against 0H , if ASL<0.01 very strong evidence 

against 0H . 

If we are in situation the variances are equal and known  

2 2 2 2

ˆ ˆ
Pr { } 1 ( )

/ / / /x y x y

ASL ob Z
n m n m

.    (3) 

### ASL calculation, when we know variances 

ASL.a<-1-pnorm((t.obs)/(sqrt(var.x*(1/n.x)+var.y*(1/n.y)))) 

The variances are unknown, but equal: 

2
( , )XF N  , 

2
( , )YG N     (4) 

2

0

1 1
ˆ: ~ (0, ( ))H N

n m
 ,                                                                          (5) 

ˆ
Pr { }

1 / 1 /
dfASL ob t

n m
,                                                                (6) 

Standard estimate for is
2 2

[ ( ) ( ) ] / [ 2]
1 1

n m
x x y y n mi i

i i
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Variances are unknown and unequal.  We can use R to find p-value. The Welch 

test 

t.test(sim.x,sim.y,alternative="greater"). 

 

The bootstrap achieved significance level (ASLboot) 

A bootstrap hypothesis test is based on a test statistic ˆ . To emphasize that a test 

statistic need not be an estimate of a parameter, we denote it here by ( )T Z . In our 

example we have ( )T Z X Y . The achieved significance level is: 

*

0Pr { ( ) ( ) }ASL ob T Z t z H (7) 

The quantity ( )t z  is fixed at its observed value and the random variable 
*

Z  has 

a distribution specified by the null hypothesis 0H . Call this distribution 0F . 

Bootstrap hypothesis testing uses a “plug-in” style estimate for 0F . Denote the 

combined sample by Z and let its empirical distribution be 0F̂ , putting 

probability 1 / ( )n m  on each member of Z . Under 0H , 0F̂ provides a 

nonparametric estimate of the common population that gave rise to both x and y.  

Algorithm to compute ASL 

1. Draw R samples of size n m  with replacement from Z. Call the first n  

observation 
*

X  and the remaining m  observation
*

Y . 

2. Evaluate * * *
( )

r
T Z X Y ,  1,...,r R  

3. Approximate bootASL  by 
*ˆ { ( ) } /boot obs

r
ASL number T Z t R  

Use R program 

> before <-c(237,289,257,228,303,275,262,304,244,233); mean.bef=mean(before) 
> after <- c(194,240,230,186,265,222,242,281,240,212);  mean.aft=mean(after) 

> total<-c(before,after); mean.tot=mean(total) 

> diff <- function(x) {mean(x[1:10]) - mean(x[11:20])} 

> d<-bootstrap(total,theta=diff,nboot=999) 

>hist(d$thetastar,freq = FALSE,col = "5",main="BOOTSTRAP REPLICATIONS", 

xlab="bootstrap values") 

> t.obs <- mean.bef-mean.aft;   abline(v=t.obs,col="red",lwd=3,lty=1) 

> asl<-sum(d$thetastar >= t.obs)/nboot;  paste("ASL =",asl) 
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Achieved significance level ˆASL = 0.02<0.05, this mean that, we reject 

hypothesis with significance level =0.05. 

Fig.

2.  Histogram of bootstrap replications of X Y . Red line is observation value. 

P-value 

P-values (A.C. Davison and D.V. Hinkley)  0

* ˆ( )bootp Prob T t F  we can use 

in nonparametric bootstrap test. bootp to approximate by 

*
1 { }

1

r
number t t

p
R

     using   
*1 *2 *

, , ....,
R

t t t  from R bootstrap samples.                                   

Studentized statistic 

More accurate testing can be obtained through the use of a studentized statistic. 

Statistic test we take      ( )
1 / 1 /

X Y
T Z

n m
(8) 

 is the pooled estimate of standard error. Repeating the above bootstrap 

algorithm, use (8) and find ˆ
bootASL . Studentization does not affect the answer, it 

does produce a different value for ˆ
bootASL . However, in this particular approach 

to bootstrapping the two sample problem, the difference is typically quite 

small.Under the null hypothesis and assuming normal populations with equal 

variances, this has a Student’s t  distribution with 2n m  degrees of freedom. 

If we are not willing to assume that the variances in the two population is equal, 

we could base the test on 
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( )
2 2

/ /

X Y
T Z

n mx y

   ,                                                                 (9) 

where
2 2

( ) / ( 1)
1

n
X X nx i

i
,  

2 2
( ) / ( 1)

1

m
Y Y my i

i
. With normal 

populations, the quantity (7) no longer has a Student’s t  distribution. 

The equal variance assumption is attractive for the t -test. In considering a 

bootstrap hypothesis test for comparing the two means, there is no compelling 

reason to assume equal variances and hence we don’t make that assumption. The 

algorithm I this case is: 

1. Let F̂  put equal probability on the points X X X Zi i
 , 1,...,i n , 

and Ĝ  put equal probability on the points i iY Y Y Z , 1,...,i m , 

where X  and Y  are the group means and Z  is the mean of the 

combined sample. 

2. Form R bootstrap data sets 
* *

( , )X Y  where 
*

X  is sampled with 

replacement from 1, ..., nX X   and 
*

Y  is sampled with replacement from 

1 , ..., mY Y  . 

3. Evaluate (.)T  defined by (7) on each data set,  

2 2 *

* *
*

( )
*

/ /

X Yr
T Z

n mx y

, 1,...,r R  (10) 

4. Approximate bootASL  by
*ˆ { ( ) } /boot obs

r
ASL number T Z t R , where 

( )obst t z  is the observed value of the statistic. 

In R this algorithm we can write commands: 

sim.x <-rnorm(50,10,5) ; n.x=length(sim.x); mean.x=mean(sim.x);var.x=var(sim.x) 

sim.y <- rnorm(40,10,7); n.y <- length (sim.y); mean.y <- mean(sim.y) 
var.y <- var(sim.y); 

 t.obs <- (mean.x-mean.y)/sqrt(var.x/n.x + var.y/n.y)  

total <- c(sim.x,sim.y); mean.tot <- mean(total) 

x.tilde = sim.x - mean.x + mean.tot;  y.tilde = sim.y - mean.y + mean.tot; R=999 

mean.x.star <- var.x.star <- numeric(); mean.y.star <- var.y.star <- numeric() 

t.star <- numeric() 

### Start the bootstrap procedure 

for (r in 1:R){ 

  x.tilde.star <- sample(x.tilde, replace=TRUE) 
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  mean.x.star[r] <- mean(x.tilde.star) 

  var.x.star[r] = var(x.tilde.star) 

  y.tilde.star <- sample(y.tilde, replace=TRUE) 

  mean.y.star[r] <- mean(y.tilde.star) 

  var.y.star[r] <- var(y.tilde.star) 

  t.star[r] <- (mean.x.star[r]-mean.y.star[r])/ 

    sqrt(var.x.star[r]/n.x + var.y.star[r]/n.y) 
}  ### finish the bootstrap procedure 

### Calculate the approximate ASL 

ASL.star <- sum( t.star >= t.obs)/R 

hist(t.star,freq = FALSE,col = "5", main="Bootstrap estimations",  xlab="Bootstrap 

values") 

abline(v=t.obs,col="red",lwd=3,lty=1); 

 paste("ASL.star =",ASL.star) 

 

 

Fig.3 Histogram of bootstrap replications.  

Achieved significance level ASL =0.41>0.05. We can’t reject hypothesis with 

significance level =0.05. 

Practical simulation 

Table 1. ASL values.  (10,5)X N  and (10,7)Y N . Seven simulations. 

Sim. 1 2 3 4 5 6 7 

Knowvaria
nce 

0.4342 0.9157 0.1197 0.8036 0.4349 0.5478 0.5961 

Welch test 0.4264 0.9692 0.0893 0.8886 0.4158 0.5551 0.6163 
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ASLboot 0.4104 0.9659 0.0880 0.8998 0.4164 0.5965 0.6006 

 

Conclusion  

The main practical difficulty with hypothesis test comes in calculating the ASL, 

(2). In most problems the null hypothesis (1), F G , leave us with a family of 

possible null hypothesis distributions, rather than just one. In normal case (4), 

for instance, the null hypothesis family (5) includes all normal distributions with 
expectation 0. In order to actually calculate the ASL, we had to either 

approximate the null hypothesis variance as in (6), Student’s method, but only 

applies to the normal situation. In considering a bootstrap hypothesis test for 
comparing the two means, there is no compelling reason to assume equal 

variances and hence we don’t make that assumption. 
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