

21 Buletini Special 2015

THE SOLUTION OF ILL-CONDITIONAL

POLYNOMIAL EQUATIONS

Eglantina KALLUCI, Fatmir HOXHA

Appl. Math. Department, Faculty of Natural Sciences, University of Tirana,

Albania

Abstract: The problem of finding the roots of polynomial equations is

encountered in many applications like image restoration, control theory and
finance. A lot of well-known methods with good convergence rate are available,

but in many real life problems we have to deal with multiple roots of polynomial

equations which is an ill-conditional problem and the known methods do not

give an accurate solution. In this paper we propose a method which at a first step
reduces the conditional number and transforms the problem into a well-

conditional one and at the second step involves a global convergence

simultaneous method to approximate the solution. This technique is compared
with best known simultaneous methods over Wilkinson polynomial, known for

their ill-conditioning. The numerical tests are done in MATLAB and

demonstrate the advantage of the proposed technique compared with other
methods.

Key words: polynomial, equation, conditional number, simultaneous, multiple,

root.

1. Introduction

The solution of polynomial equation is one of the most investigated topics in

mathematics, and because of the missing general exact solvers for polynomial

equations of power five and greater, the numerical methods lead the top solvers
for them. Related with this aim we can use a vast literature as for

example(Petkovic et al., 2014), (NcNamee, 2007), (Malek, F., Vaillancourt, R.,

(1995)) etc. One of the well-known numerical methods for solving not only
polynomial equations, but even transcendent is Newton method. In certain cases,

as in the presence of multiple roots and when the initial conditions are not near

the exact root, this convergence of this method is slow or iterative process can

diverge.

In this paper we will be focused not in improving a method with better

convergence rate, but we will deal with another fundamental obstacle in the

problem of finding the polynomial roots, which is known as ill-conditioning, so
that small perturbation to the coefficients of the polynomial can result in large

change in the roots. In general it is prudent to avoid ill-conditioning because it

can increase sensitivity to round-off errors. The ill-conditioning is a

22 Buletini Special 2015

phenomenon which appears in many mathematical problems and algorithms

including polynomial root finding.

2. The ill-conditional problem related to polynomial equations

A lot of authors take as a classic example of ill-conditioning in the context of

finding polynomial roots the Wilkinson polynomial. This polynomial is defined

by

20

1

() ()
i

f x x i . (1)

Clearly, by definition the roots of this polynomial are the integers from 1 to 20

and the expanded form of this polynomial is given below

20

0

() i

i

i

f x c x , (2)

where the coefficients ic are given by

20(1) (1, 2,3, , 20)i

i ic s  . (3)

It is convenient that small changes to any of the coefficients ic resulted in a

similarly small change to the roots of the polynomial. Unfortunately, for this

polynomial and as well for all ill-conditional polynomials this is far from the

case. For these polynomials is proved that even a slight amount of perturbation

up to
1010 of the coefficients produces a drastic effect on the roots.

A well-known and often used metric for measuring the degree of ill-conditioning

of a given problem or algorithm for solving that problem is the conditional

number. The conditional number measures how sensitive a computed answer or

output given by the algorithm is to changes in the input values or initial

conditions. When defining the condition number, it is important to note that

there are two ways in which changes to the initial and computed values may be

measured; one may choose to use either the absolute change or the relative

change.

23 Buletini Special 2015

Definition: Given a function .f X Y where X and Y are normed vector

spaces, the conditional number of f at any 0x X is defined by

0 0

0

() ()
ˆ suplim

h

f x h f x

h
 (4)

and the relative conditional number of f at 0x is defined by

0 0

0

0

() ()

ˆ suplim
h

f x h f x

h

h

x

. (5)

In the case of polynomial root-finding, where X consists of the polynomial

coefficients and Y consists of the roots we wish to obtain an expression for the

condition number of a root of a polynomial with respect to a given coefficient.

The following theorem provides an expression for computing the condition

number of any root with respect to any coefficient, provided that the root has

multiplicity 1. Note that the conditional number of a multiple is always infinite

because the derivative of a polynomial at a multiple root is 0, so that small

changes to any coefficient can lead to arbitrary large changes in the roots.

Theorem: Let
0

()
n

i

i

i

f x c x be a degree n polynomial with coefficients ic for

0 i n . If r is a nonzero root of ()p x with multiplicity 1, and 0ic , then the

relative conditional number of r with respect to jc is

1

()

j

jc r

p r
. (6)

The proof is quite evident replacing the (6) on (5) an evaluating the limits.

24 Buletini Special 2015

At the beginning of this section we have taken as an example the Wilkinson

polynomial. Using the definition (6) we see that for the root 20r , the

condition number with respect to 20 1c is

19
720

4.31 10
19!

, whereas for

1r it is
181

8.22 10
19!

. Thus the root 20r is sensitive to changes

with the leading coefficient 20 1c whereas the root 1r is virtually unaffected

by those same changes.

3. Reducing the ill-conditioning for the polynomial equations

In this section we will deal with the case of reducing the condition number when

we compute the multiple roots of polynomial equations.

In the following we shall consider the case when the order of multiplicity is not

known. The idea most frequently used is to deflate all multiple roots into simple

ones. So, if is a multiple root of a polynomial P , then is a simple root of

the ratio PP / .

Corollary. Assume that)(zP has n roots and among them there are k distinct

roots, each denoted by i with multiplicity im for ki ,,1 , respectively.

Then,)(zP and its first derivative,)(zP , have only one greatest common

divisor (GCD)

k

i

m

ic
izzP

1

1
)(, (7)

such that

)()()(0 zPzPzP c and)()()(1 zPzPzP c , (8)

where)(0 zP has exactly the same k distinct roots, i , as those of)(zP , which

are all simple roots. The multiplicity of any root i , can be determined by

25 Buletini Special 2015

,
)(

)(
'

0

1

i

i

i
P

P
m for ki ,,1 . (9)

Algorithm for finding simultaneously the polynomial roots with the respective

multiplicities. Using the notations of the corollary we construct the following

pseudocode.

Step 1. Compute)(zP of degree 1n .

Step 2. Find the GCD)(zd gc of)(zP and)(zP using the Euclidean

algorithm.

Step 3. Compute)(/)()(zdzPzq gcp and)(/)()(zdzPzq gcg .

Step 4. Employ the simultaneous method (Durand – Kerner (DK), or Erlich-

Aberth(EA)) to determine all the k roots i , distinct and simple, of)(zq p .

Step 5.The multiplicities 1im for ki ,,1 if the GCD)(zd gc is a

constant (polynomial). Otherwise, calculate the multiplicities

ipigi qqm '
.

Step 6. Output the k roots i with their multiplicities im .

Two computational aspects of this algorithm are considered. Step 2 involves

algebraic operations to search for the GCD of two polynomials. The step has

computational complexity)(2nO with Euclidean algorithm, which is the

extension to polynomials of the Euclidean algorithm for obtaining the GCD of

two positive integers, or)log(2 nnO with a fast version of the algorithm. Step

4 uses a simultaneous method to find simple roots of polynomials. The

efficiency of this method that reveals its computational complexity is obtained

by measuring the order of convergence. The order of convergence of EA method

is three, and as we are using a simultaneous method for determining k simple

roots, this algorithm finds simultaneously even their multiplicities.

As we said in the previous section in the presence of the multiple root we have

an ill-condition problem. Below we are going to present a method (numeric

algorithm) z-root- for computing the simple roots of polynomials and MultRoot-

26 Buletini Special 2015

a numeric algorithm (not free) for computing the multiple roots of polynomials,

presented by (Zeng, 2004A,B) in Numerical Recipes. The reason that this

algorithm is not free, although it behaves very well in the presence with multiple

roots, (Skowron and Gould, 2012)took the challenge to present an free

algorithm.

It was for the same reasons that we tried to write a M-file in Matlab to deal with

the case of ill-condition problem caused by the presence of multiple roots. We

have compared with one of the most powerful algorithms that Matlab ofers for

computing the polynomial root (the one that Zeng uses to compare his

algorithm).

For making some numerical tests we have used the same polynomial that Zeng

has used for testing MultRoot. Let be the following polynomial

The Matlabcomand>>rootsgives the following result,

>>roots([1 -17 127 -549 1521 -2823 3557 -3007 1634 -516 72])

ans =

 3.0000 + 0.0000i

 3.0000 - 0.0000i

 2.0003 + 0.0004i

 2.0003 - 0.0004i

1.9995

 1.0041

 1.0012 + 0.0039i

 1.0012 - 0.0039i

 0.9967 + 0.0024i

 0.9967 - 0.0024i

which graphically is presented in Figure 1.

27 Buletini Special 2015

1 2 3 4 5 6 7 8 9 10
-4

-3

-2

-1

0

1

2

3

4
x 10

-3

Figure 1. Graphical presentation of computed root of p(x) by the

command >>roots.

We have writen a M-file of the algorithm presented before, tested for the same

polynomial and it gives the following result:

>> modification([1 -17 127 -549 1521 -2823 3557 -3007 1634 -516 72])

Roots Multiplicity

 3.0000 2.0000

 2.0000 3.0000

 1.0000 5.0000

In Figure 2 the roots are presented graphically.

28 Buletini Special 2015

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Figure 2. Graphical presentation of computed root of p(x) by the

command >>modification.

The polynomial is factorised as below

and it is obvious that the algorithm >> modification behaves very well in the

presence of multiple roots, and the reason is that it reduces the condition numer

and then computes the roots.

Most of the methods diverge when the multiplicity is greater than 10. If we take

the sixth power of the upper polynomial we must deal with roots with respective

multiplicities, 30, 18 and 12,

.

Our method gives the result below,

>> modification(p6)

RootMuliplicity

 3.0002 12.0000

 1.9997 18.0000

 1.0002 30.0000

29 Buletini Special 2015

while the method>>roots thatMatlab offers diverge.

Conclusions

In this paper we presented the advantages of a modified method for computing

multiple roots of polynomial equations, which are classified in the group of ill-

conditional problem. Most known methods diverge when multiplicity is higher

than 10 and the aim of this paper was to present o method which at a first step

reduces the conditional number and then computes the root and over all even the

multiplicities of any root.

References

Malek, F., Vaillancourt, R., (1995), Polynomial zerofinding iterative matrix

algorithms, Computers Math. Appl. 29 (1), 1-13.

McNamee, J. M., (2007), Numerical methods for roots of polynomials, Studies

in Computational Mathematics 14, Elsevier.

Petkovic M., Neta B., Petkovic L., Dzunic J., (2014), Multipoint methods for

solving nonlinear equations: A survey, Appl. Math. Comput. 226.

Skowron, J., Goulp, A. (2012), General complex polynomial root solver and its

faster optimization for binary microlenses, arXiv:1203.

ZhengZ. (2004 A), Algorithm 835: MultRoot – A Matlab package for computing

polynomial roots and multiplicities, ACM Trans. Math. Software 30, 218-236.

Zeng, Z. (2004B), Computing multiple roots of inexact polynomials, Math.

Comp. 74, 869-903.

