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Abstract: The problem of finding the roots of polynomial equations is 

encountered in many applications like image restoration, control theory and 
finance. A lot of well-known methods with good convergence rate are available, 

but in many real life problems we have to deal with multiple roots of polynomial 

equations which is an ill-conditional problem and the known methods do not 

give an accurate solution. In this paper we propose a method which at a first step 
reduces the conditional number and transforms the problem into a well-

conditional one and at the second step involves a global convergence 

simultaneous method to approximate the solution. This technique is compared 
with best known simultaneous methods over Wilkinson polynomial, known for 

their ill-conditioning. The numerical tests are done in MATLAB and 

demonstrate the advantage of the proposed technique compared with other 
methods. 

Key words: polynomial, equation, conditional number, simultaneous, multiple, 

root. 

1. Introduction 

The solution of polynomial equation is one of the most investigated topics in 

mathematics, and because of the missing general exact solvers for polynomial 

equations of power five and greater, the numerical methods lead the top solvers 
for them. Related with this aim we can use a vast literature as for 

example(Petkovic et al., 2014), (NcNamee, 2007), (Malek, F., Vaillancourt, R., 

(1995)) etc. One of the well-known numerical methods for solving not only 
polynomial equations, but even transcendent is Newton method. In certain cases, 

as in the presence of multiple roots and when the initial conditions are not near 

the exact root, this convergence of this method is slow or iterative process can 

diverge.   

In this paper we will be focused not in improving a method with better 

convergence rate, but we will deal with another fundamental obstacle in the 

problem of finding the polynomial roots, which is known as ill-conditioning, so 
that small perturbation to the coefficients of the polynomial can result in large 

change in the roots. In general it is prudent to avoid ill-conditioning because it 

can increase sensitivity to round-off errors. The ill-conditioning is a 
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phenomenon which appears in many mathematical problems and algorithms 

including polynomial root finding.  

 

2. The ill-conditional problem related to polynomial equations 

A lot of authors take as a classic example of ill-conditioning in the context of 

finding polynomial roots the Wilkinson polynomial. This polynomial is defined 

by 
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f x x i .    (1) 

Clearly, by definition the roots of this polynomial are the integers from 1 to 20 

and the expanded form of this polynomial is given below 
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f x c x ,    (2) 

where the coefficients ic  are given by 

20( 1) (1, 2,3, , 20)i

i ic s  .   (3) 

It is convenient that small changes to any of the coefficients ic resulted in a 

similarly small change to the roots of the polynomial. Unfortunately, for this 

polynomial and as well for all ill-conditional polynomials this is far from the 

case. For these polynomials is proved that even a slight amount of perturbation 

up to 
1010 of the coefficients produces a drastic effect on the roots. 

A well-known and often used metric for measuring the degree of ill-conditioning 

of a given problem or algorithm for solving that problem is the conditional 

number. The conditional number measures how sensitive a computed answer or 

output given by the algorithm is to changes in the input values or initial 

conditions. When defining the condition number, it is important to note that 

there are two ways in which changes to the initial and computed values may be 

measured; one may choose to use either the absolute change or the relative 

change.  
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Definition: Given a function .f X Y  where X and Y are normed vector 

spaces, the conditional number of f at any 0x X is defined by 

0 0
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and the relative conditional number of f at 0x  is defined by 
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In the case of polynomial root-finding, where X consists of the polynomial 

coefficients and Y consists of the roots we wish to obtain an expression for the 

condition number of a root of a polynomial with respect to a given coefficient. 

The following theorem provides an expression for computing the condition 

number of any root with respect to any coefficient, provided that the root has 

multiplicity 1. Note that the conditional number of a multiple is always infinite 

because the derivative of a polynomial at a multiple root is 0, so that small 

changes to any coefficient can lead to arbitrary large changes in the roots. 

Theorem: Let 
0

( )
n

i

i

i

f x c x  be a degree n polynomial with coefficients ic for 

0 i n . If r is a nonzero root of ( )p x with multiplicity 1, and 0ic , then the 

relative conditional number of r with respect to jc  is 

1

( )

j

jc r

p r
.     (6) 

The proof is quite evident replacing the (6) on (5) an evaluating the limits. 
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At the beginning of this section we have taken as an example the Wilkinson 

polynomial. Using the definition (6) we see that for the root 20r , the 

condition number with respect to 20 1c  is 

19
720

4.31 10
19!

, whereas for 

1r  it is 
181

8.22 10
19!

. Thus the root 20r is sensitive to changes 

with the leading coefficient 20 1c whereas the root 1r  is virtually unaffected 

by those same changes.  

3. Reducing the ill-conditioning for the polynomial equations 

In this section we will deal with the case of reducing the condition number when 

we compute the multiple roots of polynomial equations. 

In the following we shall consider the case when the order of multiplicity is not 

known. The idea most frequently used is to deflate all multiple roots into simple 

ones. So, if  is a multiple root of a polynomial P , then  is a simple root of 

the ratio PP / . 

 

Corollary. Assume that )(zP  has n  roots and among them there are k  distinct 

roots, each denoted by i  with multiplicity im for ki ,,1 , respectively. 

Then, )(zP  and its first derivative, )(zP , have only one greatest common 

divisor (GCD) 
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such that 

 

)()()( 0 zPzPzP c  and )()()( 1 zPzPzP c ,  (8)  

 

where )(0 zP  has exactly the same k  distinct roots, i , as those of )(zP , which 

are all simple roots. The multiplicity of any root i , can be determined by 
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Algorithm for finding simultaneously the polynomial roots with the respective 

multiplicities. Using the notations of the corollary we construct the following 

pseudocode. 

 

Step 1. Compute )(zP  of degree 1n . 

Step 2. Find the GCD )(zd gc  of )(zP  and )(zP  using the Euclidean 

algorithm. 

Step 3. Compute )(/)()( zdzPzq gcp and )(/)()( zdzPzq gcg . 

Step 4. Employ the simultaneous method (Durand – Kerner (DK), or Erlich- 

Aberth(EA)) to determine all the k  roots i , distinct and simple, of )(zq p . 

Step 5.The multiplicities 1im  for ki ,,1  if the GCD )(zd gc  is a 

constant (polynomial). Otherwise, calculate the multiplicities 

ipigi qqm '
. 

Step 6. Output the k  roots i  with their multiplicities im . 

 

Two computational aspects of this algorithm are considered. Step 2 involves 

algebraic operations to search for the GCD of two polynomials. The step has 

computational complexity )( 2nO  with Euclidean algorithm, which is the 

extension to polynomials of the Euclidean algorithm for obtaining the GCD of 

two positive integers, or )log( 2 nnO  with a fast version of the algorithm. Step 

4 uses a simultaneous method to find simple roots of polynomials. The 

efficiency of this method that reveals its computational complexity is obtained 

by measuring the order of convergence. The order of convergence of EA method 

is three, and as we are using a simultaneous method for determining k  simple 

roots, this algorithm finds simultaneously even their multiplicities.  

 

As we said in the previous section in the presence of the multiple root we have 

an ill-condition problem. Below we are going to present a method (numeric 

algorithm) z-root- for computing the simple roots of polynomials and MultRoot- 
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a numeric algorithm (not free) for computing the multiple roots of polynomials, 

presented by (Zeng, 2004A,B) in Numerical Recipes. The reason that this 

algorithm is not free, although it behaves very well in the presence with multiple 

roots, (Skowron and Gould, 2012)took the challenge to present an free 

algorithm. 

It was for the same reasons that we tried to write a M-file in Matlab to deal with 

the case of ill-condition problem caused by the presence of multiple roots. We 

have compared with one of the most powerful algorithms that Matlab ofers for 

computing the polynomial root (the one that Zeng uses to compare his 

algorithm). 

 

For making some numerical tests we have used the same polynomial that Zeng 

has used for testing MultRoot. Let be the following polynomial  

 

 

The Matlabcomand>>rootsgives the following result, 

>>roots([1 -17 127 -549 1521 -2823 3557 -3007 1634 -516 72]) 

ans = 

   3.0000 + 0.0000i 

   3.0000 - 0.0000i 

   2.0003 + 0.0004i 

   2.0003 - 0.0004i 

1.9995           

   1.0041           

   1.0012 + 0.0039i 

   1.0012 - 0.0039i 

   0.9967 + 0.0024i 

   0.9967 - 0.0024i 

 

which graphically is presented in Figure 1.   
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Figure 1. Graphical presentation of computed root of p(x) by the 

command  >>roots. 

We have writen a M-file of the algorithm presented before, tested for the same 

polynomial and it gives the following result:   

>> modification([1 -17 127 -549 1521 -2823 3557 -3007 1634 -516 72]) 

 

Roots      Multiplicity 

    3.0000    2.0000 

    2.0000    3.0000 

    1.0000    5.0000 

 

In Figure 2 the roots are presented graphically. 



 

28                                                                                            Buletini Special 2015 

 

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

 
Figure 2. Graphical presentation of computed root of p(x) by the 

command  >>modification. 

The polynomial  is factorised as below  

 

and it is obvious that the algorithm >> modification behaves very well in the 

presence of multiple roots, and the reason is that it reduces the condition numer 

and then computes the roots. 

Most of the methods diverge when the multiplicity is greater than 10. If we take 

the sixth power of the upper polynomial we must deal with roots with respective 

multiplicities, 30, 18 and 12, 

. 

Our method gives the result below, 

>> modification(p6) 

RootMuliplicity 

    3.0002   12.0000 

    1.9997   18.0000 

    1.0002   30.0000 

 



 

29                                                                                            Buletini Special 2015 

 

while the method>>roots thatMatlab offers diverge.  

Conclusions 

In this paper we presented the advantages of a modified method for computing 

multiple roots of polynomial equations, which are classified in the group of ill-

conditional problem. Most known methods diverge when multiplicity is higher 

than 10 and the aim of this paper was to present o method which at a first step 

reduces the conditional number and then computes the root and over all even the 

multiplicities of any root. 
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