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Abstract: Histograms and kernel density estimation are the usual vehicle for 

representing data distribution graphically. In this paper we study some kernel density 

estimation in order to evaluate the percentage entrancy probability in different studies 

programs of the Faculty of Natural Sciences. We will summarize the techniques of cross 

validation methods for bandwidth choise in the kernel  estimation of probability density. 

We would like to study the total points in the final tests distribution of admitted students 

in higher education. The analysis is based on a sample taken from the database of the 

MSH 2013 (Matura Shteterore), from the National Agency of Exams (NAE) and from 

the Ministry of Science and Education (MSE).All analysis were performed using KDE 

package in R. 
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Introduction 

Histograms are simple and easy to construct for univariate data, and are 

therefore used quite frequently in many application domains, but they suffer 

from several defects i.e., the number of bins, smoothing, the outlier points 

(Silverman, B.W. 2003). The outlier points are data points that lie in bins with 

very low frequency where all the data including in each bins are equality with 

the midpoint (see, figure 1). Therefore, the count for a bin does not include the 

point itself in order to minimize over fitting for smaller bin widths. The kernel 

estimation is an alternative method, which involves smoothing the data while 

retaining the overall structure.A histogram can be thought of as a simplistic 

kernel density estimation, which uses a kernel to smooth frequencies over the 

bins. This yields a smoother probability density function, which will in general 

more accurately reflect distribution of the underlying variable. The density 

estimate could be plotted as an alternative to the histogram, and is usually drawn 

as a curve rather than a set of boxes. 

https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Kernel_(statistics)
https://en.wikipedia.org/wiki/Smooth_function
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The words used to describe the patterns in a histogram are: "symmetric", 

"skewed left" or "right", "unimodal", "bimodal" or "multimodal". 

A histogram is a simple nonparametric estimate of a probability distribution 

(Howitt, D. and Cramer, D., 2005).  
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Histograms for the graphical presentation of bivariate or trivariate data present 

several difficulties; (Silverman, B.W. 2003), for example, one cannot easily 

draw contour diagrams to represent the data, and the problems raised in the 

univariate case are exacerbated by the dependence of the estimates on the choice 

not only of an origin but also of the coordinate direction(s) of the grid of cells. 
Finally, it should be stressed that, in all cases, the histogram still requires a 

choice of the amount of smoothing. 

Though the histogram remains an excellent tool for data presentation, it is worth 
at least considering the various alternative density estimates that are available 

(Silverman B.W., 2003).  

Let 1{ ,...... }nX X  be a data sample, independent and identically distributed of a 

continuous random variable X, with density function f(x). The goal is to estimate 

the pdf ( )f x from this sample. 

The estimator ˆ ( )f x  counts the percentage of observations which are close to 

the point x. If many observations are near x, then ˆ ( )f x is large. Conversely, if 

only a few iX  are near x, then ˆ ( )f x  is small. The bandwidth h controls the 

degree of smoothing. 

The kernel density estimate is defined by the below equation (Hansen B, 2009) 
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wheren is the sample size, K is a known density function, and h is a constant 

depending upon the size of the sample that controls the amount of smoothing in 
the estimate. Note that for most standard density functions K, where x is far in 

magnitude from any point Xi, the value of K (density function) will be very 

small. The value of the density function is dependent on the data points cluster. 

Some common kernel functions are display in Table 1 (Hansen B, 2009). 

 

Table 1. Some common Kernel functions 

Kernel ( , )k u r  

Gaussian 

2

] , [

1
( , ) exp( )1

22

u
k u  

Epanenchnikov 
2

( 1)

3
( ,2) (1 )1

4
u

k u u  

Triweight 
2 3

( 1)

35
( ,6) (1 ) 1

32
u

k u u  

Tricube 
3 3

( 1)

70
( ,9) (1 ) 1

81
u

k u u  

Biweight 
2 2

( 1)

15
( ,4) (1 ) 1

16
u

k u u  

Cosine 
( 1)

( , ) cos( )1
4 2

u
k u u  

 
The value of K has impact on the value of the bandwidth an on the value of the 

density estimate. In this paper, the true value of this bandwidth must be 

estimated, and there are several methods available to optimize this estimate. 
These estimated methods are supported by a number of software packages which 

are often available in academic and other computing environments. As such, 

reference is made to implementations of these methods in MatLab, S-PLUS and 
R. Brief descriptions and sources for these and KDE package are provided by 

Arsalane (Arsalane Ch. G., 2015) 

 

Methods for Selecting Bandwidth 

 

1. T

he Rule of Thumbs and the Maximal Smoothing Principle are two 
methods falling into a category, known like “Quick and dirty” methods. 

Rule-of-thumb bandwidths are a useful starting point, but they are 

inflexible and can be far from optimal (Sheather S., 2004). 
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2. M

ethods which are falling into the second category, name Plug-in 
methods, are based on the asymptotically best choice of bandwidth h 

(Woodrofe, 1979). Plug-in methods take the formula for the optimal 

bandwidth, and replace the unknowns by estimates. But these initial 

estimates themselves depend on bandwidths. And each situation needs 
to be individually studied. Plug-in methods have been thoroughly 

studied for univariate density estimation, but are less well developed for 

multivariate density estimation and other contexts. 
3. C

ross-validation method (Arsalane Ch. G., 2015). A flexible and 

generally applicable data-dependent method is cross-validation. This 
method attempts to make a direct estimate of the squared error, and pick 

the bandwidth which minimizes this estimate. There are five known 

methods.   

a.  

Unbiased cross-validation bandwidth selection (UCV), proposed 

by Rudemo, 1982, and Bowman, 1984. It is known like least-

squares cross-validation criterion (Scott D. W. and Terrell G. R., 

1987). 

b.  

Biased cross-validation bandwidth selection (BCV), suggested 

byJones and Kappenman, 1991 (Jones M. C., Marron, J. S. and 

Sheather S. J., 1996). 

c.  

Complete cross-validation bandwidth selection (CCV), 

suggested byJones and Kappenman, 1991. 

d.  

Modified cross-validation bandwidth selection (MCV), 

proposed by Stute, 1992 (Turlach B., 2010). 

e.  

Trimmed cross-validation bandwidth selection (TCV), proposed 

by Feluch and Koronacki, 1992, a simple modification of the 

unbiased (least-squares) cross-validation criterion.  

 

Data set information. Experiment Result  

We will use a sample retrieved from the database of results in year 2013, in 
different Universities of Tirana, in order to evaluate the percentage entrancy 

probability in different studies programs of Universities of Tirana. This sample 
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has a information for n = 400 admitted students which select in the A2 form, the 

study programs of this University. It contains the total points in the four exams 
(GRE). The Kernel density is used to estimate the total point tests distribution.  

A comparison of the four midpoint sizes is provided in Figure 1, left.Note that 

the estimates are piecewise constant and that they are strongly influenced by the 

choice of bin width, where the number of bin is choise n = 7, 10, 25, 50 
respectively.  Figure 1, shows one of the problems with using histograms to 

visualize the density of points in 1D. For example, too small bin-size makes the 

histogram noisy and hard to interpret (the last one in Figure 1 right) and too 
large bin-size hide features of the underlying distribution (the first one). We use 

these bandwidths to build-up a so–called kernel estimator of f (x), Figure 1, 

right. We note that the curve changes shape, as the value of bandwidth decrease. 
We shown that students are classify into two groups for example: 

In the first group are the students who choose archictecture and in the second 

group are the students who are classified as admidded at any study program  of 

Universities of Tirana except from architecture program.  

 

 

Figure 1. Histograms with different midpoint sizes and a kernel density 

estimation with different bandwidth. 

 
Figure 2 shows Gaussian kernel density estimates based on six selecting 

methods, where we have extracted those students who are classified in the first 

group (admitted in architecture program). The density estimate depicted by 

different colour in Figure 2 is based on the five bandwidth obtained from cross-
validation and one with blue line, from the plug-in methods.. The cross-

validation curves are to near each other. The problem is to select the best 

bandwidth estimating methods and the best kernel. Also, we note that the 
estimated density that was computed with five different bandwidth captures 

three to four peaks that characterize the mode (see, grey and red curve), while 

the estimated density with lower values of bandwidth smoothest out these peaks. 
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This happens because the outliers at the distribution contribute to small values of 

h be larger than the large bandwidth values h. For more details on this estimator 
(see Silverman B. W., 1986 or Hardle W., 1991). 

 

 

 

 

 

 

 

 

 
Figure 2. Histogram and Gaussian kernel density with different bandwidth 

selection. 

Figure 3 shows that the best kernel is Gaussian kernel and the best bandwidth 
estimation methods is unbiased cross validation. From the experiment notes that 
all the kernel takes the minimal bandwidth with unbiased cross-validation 

method. 

 

Figure 3. Different bandwidth estimation methods on the right and different 

kernels on the left 
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Figure 4. Histogram and some kernel density with best bandwidth methods 

Table 2a, shows bandwidth value taken from least squared cross validation 
method (known as unbiased cross-validation. From the Table 2b, we note that:  

 25% of the students have fewer than 3796 scores and more than 6538 

scores.  

 A student which has 5167 scores can be on the top of the list of fewer 

required programs, or at the end of the list of most required programs.  

 5 students in 10 000 can have 5167 scores this because scores are 

calculating with three digits after the decimal point. 

 
Table 2.Bandwidth value for some Kernel and some numerical characteristics 

for Gaussian kernel function. 

a)  
 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

GAUSSIAN 'h' = 234.7107 

EPACHENIKOV h' = 521.6459 

TRIWEIGHT 'h' = 676.1259 

TRICUBE 'h' = 597.3534  

BIWEIGHT 'h' = 594.9082 

COSINE 'h' = 533.0223 

Eval. Points Estimation for fx 

Min:          2425 Min.   :             1.500e-09   

1st Qu.:     3796   1st Qu.:            5.843e-06   

Median :   5167    Median :          1.295e-04   

Mean   :    5167    Mean   :           1.820e-04   

3rd Qu.:    6538    3rd Qu.:           3.622e-04   

Max.   :    7909    Max.   :           4.897e-04   
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Figure 5. Gaussian kernel density for 4 samples 

From Figure 5 we show that the ratio between best mathematics program 

students and best mathematics and computing engineering program students is 
the same with the ratio between worst mathematics program students and worst 

mathematics and computing engineering program students. But mathematics 

program students are better than mathematics and computing engineering 
students. The red curve, which display the point distribution of computer science 

students differ from the others, because in this branch students have maximal 

scores or minimal scores. 

 
 

Conclusion 

In this work we provide a practical description of density estimation based on 

kernel methods. Using a kernel density estimate in combination with a histogram 
adds value to the visual presentation of data. R software supports this task by the 

KDE package. This paper motivates users to familiarize themselves with the 

theory of kernel density estimation so that they can take control of the graphical 
output.  
 

Based on this sample, we could say that, unbiased cross-validation give the 

minimum bandwidth value for all kernel density function, between them the best 
is Gaussian density estimation. 
 

The examples show that the kernel density estimator is a useful method of 
representing the overall structure of the data. Some expertise and judgment is 

required for the selection of an appropriate value of the smoothing parameter h. 

The results show the efficiency of statistical analysis. 
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