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Abstract: In this research we consider combined techniques on some signal analysis 

using empiric mode decomposition and parametric distributions analysis. The IMF mode 

whose amplitudes exhibit a stable q-distribution is considered as physical and the 

dominant processes governing it are identified by the analysis of the nature of the 
distribution. Next, a specifically de-noised and mostly unique process-type signal is 

reconstructed. The procedure is applied directly in real hydrological data series from our 

environments whereof some practical result has been concluded.   
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 INTRODUCTION  

Empirical Mode decomposition technique. 

 

The stochastic processes analysis stand in the basis of the study of many real systems. 

Empirical Mode Decomposition introduced by Huang, is an alternative analysis aside 
Fourier or wavelet techniques.  It assume that a nonlinear signal could be written in the 

very simple form   
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where the IM-s are the intrinsic modes and r are residuals as detailed in [1] and 

improved versions presented in [2],[3]. It has been successfully applied in nonlinear 

signal analysis as in [4], alternative of signal analysis as in [5] or as de-noising 
alternative reported in [6] etc. but there is no theoretical proof for EMD 

decomposition[3]. The Huang algorithm consist in the following: Compute lower and 

upper envelopes from interpolations between extremes; subtract mean envelope from 

signal; iterate until mean envelope = 0 and number of extreme = number of (zero-

crossings) ± 1; subtract the obtained Intrinsic Mode Function (IMF) from signal and 

iterate on residual until a stopping criteria is met. Not all IMF are physical and therefore 

their concrete interpretation is of great importance. Adding to that the Hilbert 
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transformation is applied for the IMF [1],[2] resulting in the instantaneous frequency 

(IF) series, hence there will be twice IMF series to be considered. To challenge problems 

related to the empiric basis, white noise-added algorithm (EEMD) or adaptive noise-

added (CEEMDAN) as given in [7] as [8] were introduced. Those approaches consider 

the fact that when dealing with a concrete set of data one must consider it as a realization 

and therefore it behave as a measurement with error. Assuming that the error has normal 

distribution, one prose to add white noise so the cancel successively. Elsewhere, higher 
order statistics has been used in de-noising process [8]. Based on this idea and following 

the idea posed recently in [9], here we use non Gaussian noise in some real data analysis 

with EMD technique. Without a proof we expect that depending on specifics of the 

concrete time series the nature of the noise will be selected carefully and in this context 

this could not be generalization. It is worth to brief in the following some elements of 

parametric distribution introduced by Tsallis, multifractal, and self-organization 

behavior etc.  

 

Parametrical Distribution. 

Following the bringing into play for q-exponentials qq yqy 1

1

11)(exp  as 

distribution for correlated systems introduced in 1998 in [10], a special such case y=x2 

called q-Gaussian has been found the attractor of the distribution for the sum of 

correlated variables and a q-Central Limit Theorem is formulated in [11]. This last has 

the form  
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It result that the q-parameter herein report the stability of distribution as seen from the 

formula 31
1
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Levy . The stable distribution will have definite variance 

given by the relation  
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but Tsallis et al [10],[11] have shown that the distribution is defined for 3,0q . Q-

Gaussians belong to heavy tails parametric distribution and are able to interpret many 

properties in real systems. As it recover the classical Gaussian in the limit q=1, its use 

has been extended in several applications even in formal absence of the proof.  
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Fractal and critical behaviour. 

 
The multifractal behavior is quite common in many real data series. Detailed 

presentation about those structures and their occurrence is given in [13]. Generally the 

fractal properties are shown in the relationship around a point )()()( xhaayaxy  

where h is the singularity exponent and a is the scaling parameter, or by using affine 

structure )()( kxykxy H  where H is the Hurst exponent [13]. The structure is studied 

using Dentrended Fluctuation Analysis by the calculation of multifractal power spectrum 

according to the relations  
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where h(q) is the generalized Hurst exponent (Holder) and q is the order of fluctuation. 

The verification of chaotic multi-scale and multi-fractal dynamics underlying time series 
observations is found of the high theoretical interest because the coupling of q-statistics 

with fractal dynamics as detailed in [14]. Therefore we will incorporate such aspect in 

our algorithm. A specific situation of the scaling is the case of discrete scale of 

invariance (DSI) according to the relation )(xyxy for some discrete value of λ. 

The time behaviour in this case is found log periodic function [15]  
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We can expect that in such case the dynamics on the data series could affect the analysis 

therefore we propose to consider this case separately.   

 

METHOD AND ALGORITHM 

The herein strategy of the EMD analysis is proposed to consider harmonization of the 

elements. Hence, we start our algorithm with the classification of some relevant 
properties of the signal according to the stability of the distribution, multifractal 

properties and critical behavior. Initially we read the stability of the distribution in 

qstationary parameter form the fit of empiric distribution (data frequencies by bins) using an 

ad-hoc script based on Nonlinear Least Squares method and an optimization of bins 

width e routine as described in [17] following appropriate reference application. Next, 

we recognize the dynamical rate by identification of Tsallis qsensitive  calculated by the 

formula given in [11] 
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Here  amin and amax are the zero point of the multi fractal power spectrum f(a)=0. If 

qsens~1 the process is assumed as highly dynamic and therefore the application of white 

noise is expected to work better. We estimate the multifractal structure by running a 

script based on Multi Fractal Detrended Fluctuation Analysis (MFDFA) [16] and use it 

to classify in the algorithm the remaining procedure in EMD routine. If q>2 which 

consist to q-variance indefinite we propose to fit q-lognormal proposed in [11] and 

applied for our system in [17] using the formula 
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If this last is fitted better, the multiplicative property is more characteristic and therefore 

we read the distance from the stationary state in parameter q2. Having estimated q value 

we simulate q-Gaussian noise with zero q-mean and variance equal to a percentile of the 

variance in original series. The process is repeated many times and the averaged noise is 

evaluated and is added to the original by directly inserting the result in the EEMD 

algorithm given in [3]. To compare we analyze the EMD of the original signal and when 

a classical Gaussian noise is added. Finally, we test the critical behavior of the signal by 

testing the log periodic presence according to original function proposed in [12] and the 

relevance of it following to the discussion in [17] with this new form  
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where tc is the critical time. An ad-hoc calculation technique based in genetic algorithm 

is used in this step. Again we expect that in this case, the q- Gaussian noise could 

complicate the efficiency of the analysis because of criticality but analytically this is 

difficult to be proofed due to the empirical basis of the EMD. The next stage is the 

estimation of the distribution in IMF itself following the idea [9] for the identification of 

the measurable signals. Finally the trend of the last IMF is identified to get known the 

underlying trend of the overall average signal. All those steps were included in standard 

EMD, EEMD or VEMD algorithms.  
 

DATA ANALYSIS AND RESULTS 

Stochastic signal with multifractal structure and low dynamic rate. 

Hydrological data from Fierza basin, Albania 

We consider as case study the daily and hourly side inflows in Fierza following our 

previous works [18] where we’ve found that the distribution are unstable or variance 

undefined, characterized by a low dynamical rate  hence appropriate as specific for our 

consideration. In the analysis of the Fierza’s daily or hourly inflows, we obtain that the 

signals behave mostly as being drawn from a q-Gaussian distribution. There is a weak 
significance of log-periodic behavior because q=1.12>>1 in the q-log periodic fit and 

smooth multifractal spectrum (Fig1). Daily inflows consist in an unstable distribution 
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process but with definite q-variance as qstac=1.9>5/3 and with low rate dynamics as read 

from qsens=0.1483. As mentioned above this could be a good candidate where the nature 

of the noise could affect outcome. Hereof, using standard EMD we evaluate 11 IMF and 

evaluated the stationary parameter form the q-Gaussians fitted q= 1.0067    1.0002    

1.1802    2.2017    2.2618    1.002    1.0663    1.0000    1.0000    2.9665. It result that the 

IMF 2-7 represent processes that do have distribution even nonstable. Accordingly, the 

local (instantaneous) frequency conjectured to those signal could be classified as 
measurable quantity (Fig2). After calculating it and adding a Gaussian noise we obtain 

the stationary parameter form q-Gaussians fitted to its distribution is found that 

frequency of IMF-1,7,8 are not measurable because the q parameter is out of the range 

]1,3[ of meaningful distribution as read from the qGN vector [3.0    2.2571    2.0974    

1.0696    1.0000    1.1674   3.0000    3.0000    2.1054].  In the case of the q-Gaussian 

noise added we see that only  one IMF has not identified average frequency (q-3) as seen 

from the vector qqGN= [2.3924    2.4764    1.9776    1.1350    1.0000    1.0001    1.3423    

3.0000]. In the simulation of the noise we set q-1.6, because the q read from the 

distribution of the amplitude of the original series has the value out of definite range for 

q-variance (q-1.9>5/5) . We observe that in this case the number of IMF is greater (here 

n=12). Even it is hard to generalise for similar cases, we obtain that in this case the use 
of the q-Gaussian noise has improved the EMD analyses and result (Fig3).   

Mixed Biophysical with complex multifractal structure-ECGexample 

In another application of our proposal we consider a highly volatile and irregular time 

series as ECG in arrhythmia. Theoretically there will be at least 5 stage on ECG output 

therefore those series contain a soup of processes each of them affecting one amplitude 

behaviour. Standard techniques in those cases apply typical filters to make it readable for 

physicians, and here we are not dealing with them. We consider those series as a specific 
item to learn the outcome of our propose by assumption that a common signal could 

consist more than one process each of one having the same importance. Herein, using a 

MDFA calculation, we observe that the multifratcal structure is not smooth (Fig4). 

Adding to this fact estimate the rate of the dynamics there is slight log-periodic 

behaviour on the trend in the sense of DSI presence.  First, we analyzed the signal using 

noise free EMD, and we observe that the number of the IMF is relatively high, and the 

amplitudes of the IMF have not stable distribution. By the evaluation of the correlation 

of original signal with the sum of IMF, we obtain a high value, near to 1. Using standard 

Gaussian noise as usually in EEMD we observe a slightly lower correlation, other 

remaining unchanged. Next, we add a q-Gaussian noise to the original signal and 

perform the EMD analysis. In this case we have missing q-reference from q-Gaussian 
distribution.  We obtain that the correlation of the sum of IMF with original signal in this 

case is lower than if white noise is added as in EEMD (Fig5). Moreover, in this complex 

signal we see that if there will be improvement in signal (IMF) distribution, this is not 

the case of corresponding instantaneous frequency in the sense that if it happen, it is 

occasionally and not a rule as seen on the table for qstationary and r-squared for each signal 

in tab (fig5). In those applications we estimate that Gaussian noise could be best solution 

if we prefer to filter noses or perhaps other techniques could be more effective as 

varational empirical mode decomposition that is not included in this survey.  
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CONLUSIONS 

Study of the stochastic nonlinear signals will be improved if we use empirical mode 
decompositions method assisted with specific noises produced using q-Gaussian 

distribution and considering multifactal structure or other fractal properties. A careful 

estimation of those last will help in the qualification of the nature of the noise. In our 

example we obtained that for signals with regular multifractal structure, the injection a q-

Gaussian noise improve the EMD analysis, but more effort should be made in the 

mathematical arguments and in the choice of q-parameter. On the other side, if the signal 

consists in a mixed set of signals or if multifactal power spectrum’s not smooth, this 

modification does not improve the analysis or can worse some aspects.  
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Appendix. Figures 
 

 
 

Fig.1. Multifactal spectrum for hourly inflows and q-distributions (midle picture) for 

different averaging time series of inflows.  Red line correspond to the 3 hour averaged. 

In corner, q1q2-lognormal shows the  fit for hourly (original serie). Right picture shows 

mixed weak log-periodic trend.  
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Fig2. IMF and q-distribution. Left, original signal. Right, instantaneous frequencies. Q-Gaussian 
assisted EMD analysis 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig.4. Noise free ECG signal and its IMF amplitude distribution (left pannel). In the right the 
multifractal power spectrum graph. In the table, the q-Gaussian parameter.  

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
Fig.5. IMF in q-noise injected for ECG signal (left) and the table of q-parameters from q-
Gaussians and R-    squared.  

 


