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Abstract 

Fractal method and descriptive analysis were used in this study to examine the 

degree to which a time series is scale invariant. One year hourly average air 
pollution (PM10 and PM2.5) series as well as other meteorological variables 

(temperature, wind speed, relative humidity, atmospheric pressure and radiation) 

time series were studied. The data were obtained from air monitoring station and the 

MeteoAlb station at Tirana. The series consisted of 6552 hourly average values 

during the period January 2013 to September 2013. Internal correlation within time 

series was examined for each variable, identifying the long–range dependency of the 

time series and annual periodicity. Probability distribution functions and standard 

statistical parameters (mean, coefficient of variation, skewness and kurtosis) are 

evaluated to examine the structure of time series. Hurst exponent was estimated 

using Rescaled Range Analysis method (R/S) and these series exhibited self-

similarity on certain time scale. For PM10 and PM2.5 we found that Hurst 

exponents were 0.82 and 0.83 respectively, showing strong long-term correlations. 
The time correlation between air pollutants and meteorological variables was 

discussed based on correlation matrix.       

 

Key words: Time series, fractal method, Hurst exponent, autocorrelation, scale 

invariance. .  

 

Introduction 

Time series data are a collection of observations on the values that a variable 

takes at different times. There is a great variety of examples where data are 

recorded as time series ranging from financial to physical sciences (Salcedo 
et al., 1999). Air pollution concentrations and meteorological data are often 

structured as time series and are characterized by large fluctuations. Physical 

understanding of the complex temporal structure of the air pollutants has 
attracted increased attention. Recently, numerous statistical analyses were 

suggested to extract useful information from air pollution concentration and 

weather variables time series (Lee, 2002; Dai and Zhou, 2017; Yuval and 

Broday, 2010). Yuval and Broday (2010), found that temperature, wind 
speed, radiation and precipitation behave in a predicable way at a certain 

time scale range, whereas air pollutants at the longer time scales exhibit 

longer memory than meteorological variables. PM10 and PM2.5 
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concentrations are significantly affected by the meteorological variables. 
Żyromski et al. (2015), investigated relationships between air pollutants and 

meteorological variables and found that air pollution is very sensitive to the 

individual meteorological parameters.  

There are many statistical analyses conducted for particulate matter mainly 
focused on PM10 and PM2.5 concentrations (Lee 2002, Yuval and Broday, 

2010, Galindo et al., 2010). Since PM10 and PM2.5 originate from different 

sources, the values of PM2.5/PM10 ratio can be used to characterize which 
source dominates. Higher ratios of PM2.5/PM10 prove the contribution of 

anthropogenic sources to particle pollution, whereas the smaller ratios 

indicate the predominance of coarse particles, which is mainly related to 

natural sources (Xu et al., 2019).  

Previous studies conducted on PM10 and PM2.5 sources in Tirana have 

shown that major anthropogenic sources are diesel vehicle emissions, traffic 

generated fugitive dust from unpaved roads, construction activities and 

waste incineration (Mico et al., 2015, Totoni et al., 2012, Civici 2003).  

In this work we aim to investigate the statistical properties of PM2.5/PM10 

ratios in addition to PM10 and PM2.5 concentrations and meteorological data 
series to evaluate the correlation between them. A suggested approach starts 

with the statistical analyses of the collected data and evaluates correlations to 

the atmosphere conditions. Autocorrelation analysis and fractal methods are 

considered efficient tools to characterize the scale invariance of the time 
series. Fractal analyses methods provide a measure of the scale invariance or 

self-similarity related to the long range dependence in the time series. 

 

Methodology 

Data 

Air pollutants in this study include PM10 and PM2.5. The hourly averages 
pollutants PM10 and PM2.5 data were supplied by the Institute of Public 

Health, Tirana, Albania.  These data were collected at the Tirana air quality 

monitoring station. The station was located at the center of Tirana, a heavily 

populated and traffic related area. The temperature, wind speed, relative 
humidity, radiation and atmospheric pressure are the measured 

meteorological variables used in this study. These measurements were 

provided by MeteoAlb station located at the center of Tirana. 

Original hourly averages used in this study include data values for the period 

from January 1, 2013 to September 30, 2013. Ideally, a specific time series 

should consist of 6552 hourly values during this period. There were no 
missing or negative values of meteorological data time series. However, due 

to instant errors our time series contain less than 6552 hourly values. PM10 

series had 81 (or 1.2%) missing hourly values. PM2.5 contained 81 missing 

hourly values and 38 negative values (or 1.8%). There are three options to 
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treat the missing values: to ignore them, to treat as zero values or to 
interpolate them. Although the missing values of PM10 and PM2.5 time series 

consist a very small portion and they are well distributed throughout the 

period of study we preferred to replace them. Replacing missing or negative 

values by neighbor averaging is considered the best way in a stable series 
(Honaker, and King, 2010). For comparison purpose, 270 daily averages for 

the same months of the year 2012 were also used. 

Usually time series statistical analyses require huge amount of data. To 
examine the similarity of two years time series data variability, firstly PM10 

and PM2.5 hourly data were converted to daily averages. Then, 

autocorrelation functions (ACFs) were calculated for each time series. The 
corresponding results presented in the Figure 1 shown that ACFs exhibit an 

easily observable periodicity for the period under study. So, we can use the 

hourly data collected over a period of 9 months to perform the statistical 

analyses.   

  
Figure 1. Autocorrelation function graphs for a) PM10 and b) PM2.5 daily average 

time series at 2012 and 2013 

 

 

Statistical Analysis  

Statistical analysis of time series were performed using a two stage 

approach. We combined the statistical analysis used to evaluate 
autocorrelation functions with fractal method known as rescaled range 

analysis used to estimate Hurst parameter, H.  

In the primary stage we used Rescaled Hurst Analysis to evaluate the degree 
of persistence in the data series. We evaluate the Hurst exponent, H, to 

quantify whether a time series exhibits (long) memory that enables the 

predictabilities. The next stage was based on the statistical analysis of 
autocorrelation functions and correlation matrices used to evaluate cross-

correlation between particulate matter concentrations and meteorological 

variables.  

Hurst Exponent: Rescaled Range Analysis 

How consistent is a time series? Hurst (“Father of the Nile”) developed a 

method known as Rescaled Range Analysis (R/S) studying the temporal 
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structure of the times series of Nile river level (Hurst, 1951). Hurst exponent, 
H, distinguishes a random series from one that is not (Mandelbrot, 2009). 

Hurst exponent is considered a test to qualify whether a time series exhibits 

long memory. If a time series is self-similar or not can be determined from 

the goodness of the fits of the log-log plots (Breslin and Belward, 1999). The 
exponent H is a real number that takes value in ]0, 1 If 0.5 < H < 1, the time 

series is persistent, that is, high present values are more probable to be 

followed by high future values, or the trend continues long into the future 

(long-term memory). If H  1 the series is deterministic and appears in time 

series generated by long-term cyclic processes (Cadenas et al, 2019). 

If H = 0.5, the time series is random and uncorrelated, with identical 

properties as a Brownian motion.  In the case of 0 < H < 0.5 anti-persistence 

can be shown, that is, low values are followed by high future values and vice 
versa. For each time series we applied the standard procedure of Hurst 

calculation (Sánchez Granero et al., 2009). This procedure is based on the 

calculation of the expected value of the rescaled range for the time series, 

E[R/S]n. As N → the asymptotic relation holds: E[R/S]n = CNH where N is 

the number of hours to calculate the mean value. Hurst can be calculated by 

using the linear regression of the function: 

                         log C H log N  log (R/S)n                  [1] 

where H is Hurst exponent. 

Autocorrelation Function 

Correlation of a given value in a time series with past and future values is 

called autocorrelation coefficient. When this coefficient is calculated for 
different time lag values we obtain the Autocorrelation Function (ACF). This 

function is a way to measure and explain internal association between 

observations within a time series. If we have a sample Xt (t = 0, 1, 2,…, n), 

ACF can be calculated by the formula (Box and Jenkins, 1976): 

   
2/12/1

1

2)(
1

2)(

1
))((

),(





































n

t
X

kt
X

n

t
XtX

kn

t
X

kt
XXtX

XXCorr ktt
   [2] 

where k is the time gap being considered and is called time lag. ACF is a 
simple graphical method to test whether the adjacent values are correlated 

(for example #1 to #5 and #2 to #6, and so on for a lag k=4). ACF shows the 

internal association of a given time series. If the internal association within 

the time series of a variable at a certain period of time is very strong 
(positive or negative) an accurate predictability of this variable is possible 

(Salcedo et al., 1999, Dai and Zhou, 2017). If it is weak then there is no 

identifiable association and predictability is limited or impossible. In the 
Figure 2 are presented the time series constructed from the dataset of hourly 

averages of air pollutants and meteorological variables.  
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Figure 2. Time series constructed from the dataset of hourly averages of: (a) PM10, 
(b) PM2.5, (c) PM2.5 / PM10 ratio, (d) wind speed -WS, (e) temperature -T, (f) relative 

humidity –RH, (g) solar radiation-SR, and (h) pressure –P values. 
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Results and discussions 

Descriptive Analysis 

To describe above time series we first evaluated the standard statistical 

parameters (mean, standard deviation, coefficient of variation and 

skewness).  

 

Table 1. Descriptive Statistics of variables: PM10, PM2.5, Relative Humidity 

(RH), Temperature (T), Solar Radiation (SR), Pressure, (P) Wind Speed (WS). 

Variable  Mean 

  Standard     

  deviation 

    Coefficient of     

    variation (cv) %  

  Skewness  

       (sc)  

PM10 (µg/m3)  32.38 20.31 62.72 1.75 

PM2.5 (µg/m3)  15.69 12.20 77.79 2.73 

PM2.5/PM10  0.50 0.19 38.92 0.31 

RH (%)  60.90 16.85 27.66 -0.08 

T (°C)  18.68 7.77 41.58 -0.03 

SR (W/m2)  179.47 251.18 139.96 1.25 

P (kPa)  999.23 6.24 0.62 -1.56 

WS (m/s)  1.19 0.63 53.45 1.31 

 

The coefficient of variation indicates the degree of dispersion around the 
mean value. Skewness is a statistical parameter that evaluates the symmetry 

of distribution pattern, the degree and direction of departure from the 

symmetry. As shown in Table 1 the large difference between low and high 
concentrations results in the largest variation and skewness of PM2.5 and 

PM10. The mean value of PM2.5/PM10 ratio equal to 0.5 is an indication of the 

dominance of fine particle pollution (particle size with diameter diameter of 

2.5 µm or less)  over coarse particles (particles with diameter ranging from 
from 2.5 to 10µm), proving the high contribution of anthropogenic sources 

(Seinfeld and Pandis, 2006, Zhao et al, 2019). The smaller variability of 

ratios PM2.5/PM10 than that of both PM2.5 and PM10 indicates the low variety 
of related sources and factors that influence the ratio. Since values of 

coefficients of skewness of PM series are positive they are all skewed to the 

right (PM2.5 > PM10 > PM2.5/PM10). The skewness values of meteorological 
variables are positive, skewed to the right (WS > SR), and negative, skewed 

to the left (P > RH > T). 

Probability Density Functions  

The study of the data distributions is very important in statistics of time 
series. Probability distribution function (PDF) and cumulative distribution 

function (CDF) are important in statistics and closely associated.  It is well 

known that CDF represent the cumulative values of PDF and PDF is simply 
the derivative of CDF. To avoid binning sensitivity we firstly proceeded 

with CDF of the series and then obtained PDF from calculating the 

derivative of CDF. We have fitted the series of particulate matter 
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concentrations and the ratios with several theoretical distributions that are 

shown in the Figure 3. 

(a) 

(b) 

(c) 

Figure 3: The plot of PDFs of time series of: (a) PM10 (b) PM2.5 (c) 

PM2.5/PM10 ratios. 
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No accurately fitting of our empirical distributions with a particular 
theoretical distribution was observed. Positively skewed to the right 

distributions (PM2.5> PM10> PM2.5/PM10 ratio) were obtained. We found 

that the most suitable compared to the other probability distributions were: 

PM2.5– Log-logistic distribution, PM10– Fréchet distribution and PM2.5/PM10 

ratio– Gamma distribution. 

Hurst Exponent Calculation 

We calculated H for all time series by dividing them into equal subseries and 
estimating the statistical R/S for each segment. Linear regression resulting 

from the rescaled range analysis performed for all time series is shown in the 

Figure 4. Hurst exponent values are presented in Table 2.   

 
Figure 4. Calculation of Hurst exponent of PM and meteorological variable time 

series by the R/S method. N is the number of hours in each of the subseries. 

 

 

Hurst exponent values are almost sufficiently greater than 0.5, showing a 
persistent behavior of our time series. Time series are not independent from 

time. PM10 series has more fracture than PM2.5. High values of Hurst for T, 

SR and P are an indication of long-term memory in the time series. 

Otherwise, low value of Hurst for wind speed time series presents a tendency 

toward randomness.   
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Autocorrelation Function 

Figure 5 shows the results of autocorrelation analysis. The time lag was 

made to run from 1 hour to 200 hours. All time series except from P series 
seem to have periodic behaviour. Behaviour of ACF is clearly identical for 

PM10 and PM2.5, sinusoidal with 12 h period. PM2.5/PM10 ratio has similar 

behaviour as RH, T, WS, SD (sinusoidal with 24h period, due to alteration 

between day and night). 

 

 
Figure 5. ACFs as the function of lags (in hours ) for all series. 

 

Solar radiation and wind speed varied more frequently than other variables. 
Pressure has different behaviour, presenting a slower exponential decay than 

other series.  Pressure series is less independent in all time legs of 70 hours. 

This is in accordance with time series graphs presented in the Figure 2, 

Table 2: Hurst values calculated using rescaled range analysis for time series. 

    

Series 

 

 

PM10 

 

  

PM2.5 

 

 

PM2.5/ 

PM10 

 

 

RH 

 

 

SR 

 

 

T 

 

WS 

 

P 

 

       

    H 0.79 0.84 0.84 0.82 0.98 0.90 0.69 0.88 
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where pressure varies less frequently than others. For any value of time lag 

ACF of temperature is highest. 

Cross-Correlation 

The concentrations of PM10 and PM2.5 were positively correlated with each 

other, where correlation coefficient is 0.76.  Poor associations of PM2.5 and 
PM10 concentrations with meteorological variables were observed by cross 

correlation analysis. It may be related by the performance of the cross-

correlation function applied in the case of short time series (Vio and 
Wamsteker, 2001). Another important factor that can influence cross-

correlations is the multifractal structure of meteorological time series 

(Baranowski et al, 2015).  

Otherwise, the association of PM2.5/PM10 ratios with meteorological 

variables remained statistically significant (Table 3). 

Table 3. Pearson cross-correlation for air pollutants and meteorological  variables 

         PM10        PM2.5     PM2.5/PM10 

PM2.5 0.76 

  PM2.5/PM10 -0.14 0.44 

 
RH -0.26 0.11 0.61 

T 0.09 -0.27 -0.59 

SR 0.10 -0.22 -0.55 

P 0.17 0.19 0.01 

WS -0.20 -0.35 -0.34 

 

Relative humidity had a significantly positive effect on PM2.5/PM10. Since 

RH had negative influence on PM10 greater than positive influence on PM2.5, 
higher RH get worse pollution mainly with PM2.5. Temperature, solar 

radiation and wind speed had negative effect on PM2.5/PM10 ratios, while 

pressure had weak effect. The vertical structure of the atmosphere and 
vertical air movement are significantly controlled by temperature, solar 

radiation and wind speed (Seinfeld and Pandis, 2006). WS tends to eliminate 

air pollutants. WS was more efficient to PM2.5 than PM10, resulting in a 

negative correlation with ratios.  SR had stronger effect on PM2.5 than PM10 
resulting in higher values of ratios. Lower values of SR means reduced 

vertical dispersion of pollutants. Higher values of temperature favour the 

dispersion of pollutants, affecting fine particles more than coarse particles 

(Xu et al, 2019). 

Pressure is inverse proportional with temperature and positively correlated 

with particulate matter, affecting PM2.5 slightly more than PM10, but the 
other factors can influence, resulting in a poor correlation with PM2.5/PM10 

(Dai and Zhou, 2017). 
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A determinant factor that influences the level of PM concentrations is the 
variation of PBL (Planetary Boundary Layer), which is significantly affected 

by meteorological factors (Mandija et al, 2017). The combination of long-

range transport processes with local aerosol emissions also determines the 

level of PM concentrations. But these two sets of processes are influenced 

differently by meteorological factors and have different variations. 

Conclusions 

By using R/S and ACF statistical methods were obtained similar results.  All 
time series showed strong persistence, except for pressure time series were 

lowest value of Hurst exponent was observed. PM2.5/PM10 ratio had similar 

behavior as meteorological data (sinusoidal with 24 hours period) and high 
correlation was found between RH, T, SR and WS. 12 hours period observed 

for PM10 and PM2.5 series is related with meteorological variations and 

human daily activities. Autocorrelation analysis is very helpful to identify 

the effect of meteorological variables on the PM2.5/PM10 ratios more than on 
PM10 and PM2.5 separately. The study of PM2.5/PM10 can figure out the 

contribution of fine particles and coarse particles.  

Harmonizing the uncontrolled meteorological variables by the controlled 
human activities air pollution reduction strategies can be improved. During 

the hours with higher ratios the measures should be focused on 

anthropogenic sources. During the hours with lower ratios measures should 

be focused on the coarse particle pollution. The study provides a resource for 
environmental agencies to focus reducing emission by integrating 

PM2.5/PM10 ratios with meteorological factors and air pollutant sources.  

Further studies taking into account the different factors influencing PM 
dispersion processes also using multifractal approach are necessary in order 

to better describe the statistical properties of PM and meteorological data 

time series.  
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