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Abstract 

To provide accurate predictions of different thermodynamic properties of the 

(bio)molecular systems, such as free energy of hydration, pKa, binding energy, or 

quantum mechanical properties, is challenging and computationally time-

consuming. Besides, the consistency among all other molecular systems already 

optimized remains still challenging and perhaps tricky to automate. Very recently, 

machine learning approaches are introduced to automate and predict different 

properties. Although these methods are very accurate to interpolate among the 

training dataset, they suffer for not being able to extrapolate outside the training 

dataset. Therefore, in practice, the increase of diversity among the molecules 

included in the training dataset is required to guarantee good predictions. On the 

other hand, that would require building up extensive and quickly to manage 
databases of (bio)molecular systems with known properties either experimentally or 

by quantum mechanical calculations. This study aims to introduce a database 

management system of a large dataset that can be used to automate the prediction of 

(bio)molecular properties using a new machine learning approach. Also, we aim to 

discuss the importance of the choice of the chemical space of the training dataset, so 

that the experience gained by the training to incorporate all the laws of physics 

adequately. 

Key words: Machine Learning, feature descriptors, database, molecular properties, 

artificial neural networks, bootstrapping. 

Introduction 

Recently,  the neural network method has seen a broad range of applications 

in molecular modeling. (Mater & Coote, 2019) In Ref. (Lubbers, et al., 

2018), a hierarchical interacting particle neural network approach is 
introduced using quantum models to predict molecular properties. In this 

approach, different hierarchical regularization terms have been added to 

improve the convergence of the optimized parameters. While in Ref. 
(Gastegger, et al., 2018), machine learning like-potentials are used to predict 

molecular properties, such as enthalpies or potential energies. The degree to 

which the general features included in characterizing the chemical space of 
molecules to improve the predictions of these models is also discussed in 
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Refs. (Goh, et al., 2018; Collins, et al., 2018). Tuckerman and co-workers 
(Schneider, et al., 2017) used a stochastic neural network technique to fit 

high-dimensional free energy surfaces characterized by the reduced subspace 

of collective coordinates. While very recently (Kamath, et al., 2018), a 

comparison study has been performed between the neural network approach 
and Gaussian process regression to fit the potential energy surfaces. One of 

the recognized problems in using machine learning approaches in prediction 

free energy surfaces is the inaccurate representation of general features of 
the surface topology by the training data. To improve on this, a combination 

of metadynamics molecular dynamics with neural network chemical models 

has also proposed (Herr, et al., 2018). It is worth noting that in the prediction 
of free energy surfaces, an accurate representation of the reduced subspace 

can be crucial. For that, Wehmeyer & Noè (Wehmeyer & Noe, 2018) have 

used the time-lagged auto-encoder to determine essential degrees of freedom 

of dynamical data. 

Machine learning approaches have also been in the field of drug-design, for 

instance, in predicting drug-target interactions (Chen, et al., 2018), and it is a 

promising approach. In particular, the method is used in combination with 
molecular dynamics to predict the ligand-binding mechanism to purine 

nucleoside phosphorylase (Decherchi, et al., 2015), and it accurately 

identifies the mechanism of drug-target binding modes. 

In this study, we employed a novel method for prediction of 
(macro)molecular properties using a swarm artificial neural network method 

as a machine learning approach. In this method, a (macro)molecular 

structure is represented by a so-called description vector, which then is used 
as input in a so-called bootstrapping swarm artificial neural network 

(BSANN) for training the neural network. (Kamberaj, 2020) We aim to 

develop an efficient approach for performing the training of an artificial 
neural network using either experimental or quantum mechanics data. In 

particular, we created different user-friendly online accessible databases of 

well-selected experimental (or quantum mechanics) results that can be used 

as proof of the concepts. Furthermore, with the optimized artificial neural 
network using the training data served as input for BSANN, we can predict 

properties and their statistical errors of new molecules using the plugins 

provided from that web-service.  

There are four databases accessible using the web-based service. A database 

of 642 small organic molecules with known experimental hydration free 

energies (Mobley, 2013) is presented, which is well-studied in Ref. 
(Riquelme, et al., 2018); the database of 1475 experimental pKa values of 

ionizable groups in 192 proteins (including 153 wild-type proteins and 39 

mutant proteins) (Thurlkill, et al., 2006; Pace, et al., 2009; Click & 

Kaminski, 2009; Pahari, et al., 2019); the database of 2693 mutants in 14 
proteins with given values of experimental values of changes in the Gibbs 

free energy (Gromiha, et al., 1999; Bava, et al., 2004); and a database of 
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7101 quantum mechanics heat of formation calculations with the Perdew-
Burke-Ernzerhof hybrid functional (PBE0). (Rupp, et al., 2012; Collins, et 

al., 2018) 

All the data are prepared and optimized in advance using the AMBER force 

field (Wang, et al., 2004) in CHARMM macromolecular computer 
simulation program. (Brooks, et al., 2009) The BSANN is the code for 

performing the optimization and prediction written in Python computer 

programming language. The descriptor vectors of the small molecules are 
based on the Coulomb matrix and the sum over bond properties, and for the 

macromolecular systems, they take into account the chemical-physical 

fingerprints of the region in the vicinity of each amino acid. Note that the 
application of the BSANN algorithm for the datasets introduced in this study 

shall be published later in (Rahmani & Kamberaj, 2020). 

Materials and methods 

Artificial Neural Network 

Machine Learning (ML) approach provides a potential method to predict the 

properties of a system using decision-making algorithms, based on some 

predefined features characterizing these properties of the system. There exist 
different ML methods used to predict missing data or discover new patterns 

during the data mining process. (McCulloch & Pitts, 1943) The neural 

networks method considers a large training dataset, and then it tries to 

construct a system, which is made up of rules for recognizing the patterns 
within the training data set by a learning process. In general, for an ANN 

with  hidden layers (see also Figure 1), the output  is defined as 

 

    (1) 
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Figure 1. Illustration diagram of an artificial neural network (ANN). It is 

characterized by an input vector of dimension   hidden layers of neurons each, 

and an output vector of dimension , as published in Reference. (Kamberaj, 2020; 

Rahmani & Kamberaj, 2020) 

Here,  and  are considered as free parameters, which need to be 

optimized for a given training data used as inputs and given outputs, which 
are known. To optimize these parameters, the so-called loss function is 

minimized using the Gradient Descent method (Qian, 1999): 

          (2) 

 

where  represents the actual output vector. For that, the gradients of 

 with respect to  and  are calculated (Qian, 1999): 

           (3) 

To avoid over-fitting of ANN, the following regularization terms have been 

introduced in literature: (Srivastava, et al., 2014) 

           (4) 

where  is called learning rate for the gradient and  is called the 

regulation strength. 

Usually, the Gradient Descent method often converges to a local minimum, 

and hence it provides a local optimization to the problem. To avoid that, a 
new Bootstrapping Swarm Artificial Neural Network method is proposed in 

the literature (Kamberaj, 2020), which is introduced in the following. The 

applications of the BSANN algorithm for the current databases shall be 

shown in Ref. (Rahmani & Kamberaj, 2020). 
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Bootstrapping Swarm Artificial Neural Network 

In the following, we are presenting the BSANN algorithm, which shall be 

shown in Ref. (Rahmani & Kamberaj, 2020). 

The standard ANN method deals with random numbers, which are used to 

initialize the parameters  and ; therefore, the optimal solution of the 

problem will be different for different runs. In particular, we can say that 
there exists an uncertainty in the calculation of the optimal solution (i.e., in 

determining  and .) To calculate these uncertainties in the estimation of 

the optimal parameters,  and , we introduce a new approach, namely 

bootstrapping artificial neural network based on the method proposed by 
Gerhard Paass (Paass, 1993), or similar methods (Zhou, et al., 2019). In this 

approach,  copies of the same neural network are run independently using 

different input vectors. Here, we implement that at regular intervals, to swap 

optimal parameters (i.e.,  and ) between the two neighboring neural 

networks, which is equivalent to increasing the dimensionality of the 

problem by one; that is, if the dimensionality in each of the replicas is 

, then the dimensionality of the bootstrapping artificial neural 

network based on the method is . Figure 2 shows the layout of this 

configuration.  

Furthermore, to achieve a good sampling of the phase space extended by the 

vectors  and , we introduce two other regularization terms similar to the 

swarm-particle sampling approach. First, we define two vectors for each 

neural network, namely  and , which represent the best local 

optimal parameters for each neural network . In addition, we also define 

 and , which represent the global best optimal parameters 

among all neural networks. 

Then, the expressions for the gradients are modified by introducing these 

two regularization terms as the following: 

 

for each neural network configuration , . Here,  is a 

random number between zero and one, and  and  represent the strength 

of biases toward the local best optimal parameters and global best optimal 

parameters, respectively. The first term indicates the individual knowledge 

of each neural network, and the second bias term, the collective expertise 

among the neural networks. This method is called Bootstrapping Swarm 
Artificial Neural Network. (Kamberaj, 2020), and it shall be applied to the 

current databases in Ref. (Rahmani & Kamberaj, 2020). Then, the weights, 

, and biases, , for each neural network  are updated at each iteration 

step according to: 
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Figure 2. The layout of the Bootstrapping Swarm Artificial Neural Network 

(BSANN) as adopted by (Kamberaj, 2020). It is characterized by  different input 

vectors each of dimension ,  hidden layers of  neurons each, and 

 different output vectors each of dimension . Every two neighboring neural 
networks communicate regularly with each other by swapping the optimized 

parameters. A test of the BSANN algorithm shall be published elsewhere (Rahmani 

& Kamberaj, 2020). 

(Macro) molecular Feature Description 

To construct data-driven models, such as in the ML approach, we will need 
to specify a list of physical and chemical properties of the input 

(macro)molecule that contain necessary information about the system. Here, 

the input data will be presented by a vector of length , called . That 

process is called feature description, and the input data are called feature 

descriptors. We are describing in detail the algorithm for determining the 
feature descriptor vector of molecules in the following; the results of the 

applications to the databases introduced in this study shall be published in 

(Rahmani & Kamberaj, 2020). 

Often, a so-called Simplified Molecular Input Line Entry System (SMILES) 
is used to represent a small molecule as a string of letters (Weininger, 1988). 

In such a case, the atoms could be encoded by a single integer number, such 

as H=1, C=2, N=3, and so on, or by the nuclear charge , such as H=1, C=6, 

N=7, and so on. (Unke & Meuwly, 2018) Therefore, it creates an 

(unnecessary) relationship between the input data, namely H<C<N, which 
could influence on the network performance. Other encoding models are also 

suggested, for instance, representing each atom of the input molecule by the 

following fingerprint: H=[1 0 0 …], C=[0 1 0 …], N=[0 0 1 …], and so on. 
(Unke & Meuwly, 2018) However, these fingerprints do also have 

drawbacks because the dimensions of the encoding vector depend on the 

number of atoms in the structure and may vary from molecule to molecule; 
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moreover, based on this model, the atoms belonging to the same group in the 

periodic table of elements do not behave the same. 

In this study, we used the so-called Coulomb matrix, , to encode the 

molecular features, which contains both the geometrical information of the 

three-dimensional structure and the atom type in the molecule. (Rupp, et al., 

2012) For any two atoms  and  in a given input molecule, the matrix 

element  is as follows: 

               (7) 

where  is the atomic number of the i-th atom and  is the distance 

between the atoms  and . The fingerprint represented by the Coulomb 

matrix, , has some advantages, such as it takes into account the three-
dimensional molecular structure, and it is invariant under rotational and 

translation of the structure. To calculate  for a given molecular structure, 

we need the nuclear charges for each atom and the Cartesian coordinates of 

the atomic positions taken from the equilibrium geometry. However, note 

that  is not invariant under the permutations of the atom order in a 

molecule. Therefore, the spectrum of eigenvalues of matrix  can be used as 

a fingerprint of the molecule, since they are invariant under both 

rotation/translation and permutations of the rows and columns. 

A second feature descriptor that we used in this study is the so-called sum 
over bonds, which is a numerical descriptor representing the vector of bond 

types present in a molecule, similar to (Yang, et al., 2019). If  is the 

number of unique bonds in the dataset of the compounds studied, then a 

vector with dimensions  is constructed for each molecule with entry either 

zeros or the integers giving the frequency of appearance for each bond type 

in molecular structure. This fingerprint descriptor vector has the same length 

within the dataset. Then, the vector descriptor of the sum over bonds is 

concatenated at the end of the Coulomb matrix descriptor.  

To construct the input descriptor vector for a macromolecule, we introduced 

the following model. For example, suppose we would like to calculate the 
change on the Gibbs free energy upon the mutations (either single or 

multiple mutations) or perform pKa calculations for a selected residue in a 

protein. We label each residue or nucleotide of the input sequence with an ID 

from 1 to 24. That is, we form a descriptor vector with length , , 

which is a vector of zeros and ones defined as the following: 
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    (8) 

where A. A. dictionary represents the dictionary of all amino acids. In 
addition, to characterize the environment around any mutation point, we 

determine another descriptor vector, namely  with length , which 

is defined as the following. For each mutation point amino acid , we 

determine the nearest neighbor amino acids , based, for 

example, on the center of mass distance. Then, the jth element  of the 

vector  is defined as a modified `Coulombic matrix`: 

           (9) 

In Eq. (9), the first sum runs over all point mutation amino acids, and the 

second sum runs over all nearest neighbors of amino acids i. Here,  

denotes the center-to-center distance between the two amino acids. To take 
into account the polarity of the amino acids, we introduce a binary vector of 

dimension , such that  

               (10) 

where  represents a non-polar amino acid,  represents an uncharged 

polar amino acid, and  represents a charged polar amino acid. In 

addition, we also added another component to the net vector, which is a real 

value representing the percentage of the buried part of the amino acids 

), which is defined as the ratio of the buried surface with the 

solvent accessible surface area of the amino acid in the protein structure, and 

it is represented by the vector . Note that vector  can also include other 

properties, such as the temperature, concentration of the salt, and pH value 

of the experiment; therefore, we can write: 

           (11) 

In Eq. (11), , , and  are the temperature (in kelvin), concentration (in 

molar) and pH, respectively. 
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To determine the descriptor vector of the macromolecule, such as protein, 

we concatenate the vectors , and  into a net descriptor vector  

with length . Note that in the expression given for , other 

properties can also be encoded. For example, we can encode the dielectric 

properties in the vicinity of each amino acid in the structure by modifying it 

as follows: 

           (12) 

where  is the dielectric constant of the environment in the vicinity of the 

mutated amino acid , which can be taken a simple distant dependent 

dielectric constant between the amino acid  and its nearest neighbor : 

, where  is a constant or even other complicated distance 

dependence function. (Mehler, 1996; Mehler & Guarnieri, 1999) However, 

in this work, a different, more complicated distance dependent dielectric 

constant is considered, such as the sigmoidal function (Mehler, 1996; Mehler 

& Guarnieri, 1999): 

         (13) 

where  is the distance between two amino acids,  is the dielectric 

constant of water,  

, ,            (14) 

with  being the dielectric constant of protein. A plot of the  

versus the distance  is presented in Figure 3 for both simple functions of the 

distance of dielectric constant and sigmoidal distance dependence function 

of the dielectric constant. Here, the sigmoidal function gives a smooth 
variation of the dielectric constant screening the electrostatic interactions 

from 2 (which is the dielectric constant of the internal protein) to 80 (which 

is the dielectric constant of bulk water, as shown in Figure 3. 

 

Figure 3. Dielectric constants as a function of the distance  between the amino 

acids for the two cases:  with , and dielectric constant  as 

explained in the text for  is the dielectric constant of water, , 



 

 

71                                                                                      BSHN (UT) 28/2019 

 

 with  being the dielectric 

constant of protein. 

Note that these fingerprints of the structures are rotation and translation 

invariant. Furthermore, as a sequence of the amino acids in a 

macromolecular structure, the protein data bank, RCSB PDB (Berman, et al., 

2000), can be used that is unique. Therefore, the descriptor vector  is an 

exclusive representation of a macromolecule in a dataset. Besides, the 

descriptor vector  has the same length for any set of the macromolecules 

used as input. 

It is important to note that if the chemical sample space of the input 

descriptor vector becomes quite large, then the so-called principal 

components analysis (Karhunen, 1947) can be performed to reduce the 

degrees of freedom. 

Web-based Services 

Structure 

Figure 4 shows a flowchart of the offered web-based services. It consists of 

several databases using different experimental or quantum mechanics data. 

In particular, it includes the hydration free energies of molecules database 
(Mobley, 2013); the heat of formation (or standard enthalpy of formation) of 

small molecules using quantum mechanics calculations with the Perdew-

Burke-Ernzerhof hybrid functional (PBE0). (Rupp, et al., 2012; Collins, et 

al., 2018); pKa values experimentally calculated for different amino acids in 
various proteins (Thurlkill, et al., 2006; Click & Kaminski, 2009; Pace, et 

al., 2009; Pahari, et al., 2019); the experimental changes on the Gibbs free 

energies of the mutant proteins (Gromiha, et al., 1999; Bava, et al., 2004).  

The clients are the personal computers (PCs), where the users with a login 

account will be able to access the first layer of the provided web-based 

services from the central computer, namely the server. With that first session 

login, the users will be allowed to access and manipulate the data from 
different databases. In particular, the users can read the data from each 

database in a tabular form, which then can be copied and pasted on the local 

computer. Besides, the users can see some statistics about the data included 
in each dataset, allowing for a judgment of the distribution of the data. Also, 

the users are permitted using the forms provided on the web to upload new 

data in a particular database. These data will initially be marked as ``not 
checked``, but after the chief administrator of the web-based services verifies 

the authenticity of the information, the data is added to the existing database. 

That can allow the databases to increase the amount of information in the 

future.  

Using the data for each dataset, the chief administrator, frequently, performs 

the optimization of the artificial neural network parameter using an 

exhaustive machine deep-learning approach by employing the BSANN 
python code, internally in the server. Note that only specific users are also 
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allowed to perform the optimization on the server using individual Login 
information. Then, the second session of login, for particular users, is 

allowed to use other services of our tools. In particular, those specific users 

can use web-based services online to design and optimize novel molecules. 

Then, using the optimized artificial neural network parameters with the 
training data, they can predict different properties provided for these 

molecules. It is interesting to note that the external plugins use graphical 

interfaces, making the services very user-friendly.  

 

Figure 4. The flowchart of the web-based services. 

Datasets 

There are four databases served using that web-based service. The first 

database contains 642 small organic molecules, for which we know the 
experimental hydration free energies (Mobley, 2013), which has also been 

subject to our previous studies (Izairi & Kamberaj, 2017). The second 

database contains 1475 experimental pKa values of ionizable groups in 192 

proteins, both wild type (153 proteins) and mutated (39 proteins) (Thurlkill, 
et al., 2006; Click & Kaminski, 2009; Pace, et al., 2009; Pahari, et al., 2019). 

The third database has 2693 experimental values of the Gibbs free energy 

changes in 14 mutant proteins (Gromiha, et al., 1999; Bava, et al., 2004). 
The last database has 7101 quantum mechanics heat of formation 

calculations (Collins, et al., 2018) (and the references therein), the so-called 

QM7, which is a subset of the so-called GDB13 molecules, optimized at the 
quantum mechanics level with the Perdew-Burke-Ernzerhof hybrid 

functional (PBE0). (Rupp, et al., 2012) In Figure 5, we show the distribution 
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of the average experimental pKa for each residue in the wild-type and 

mutated proteins of the database. 

 

Figure 5. Average experimental pKa for each residue in the wild-type (A) and (B) 

mutants proteins of the database. 

In Figure 6, we show the distribution of the percentage of each type of 

mutation in the database for which we know either  or , namely 

1: single mutation; 2: double mutations, and so on, up to 6: six mutations. 

 

Figure 6. Percentage of each type of mutation in the database for which we know 

either  or  (B). 1: single mutation; 2: double mutations, and so on, 6: six 

mutations. 

All the data are prepared and optimized in advance using the AMBER force 

field (Wang, et al., 2004) in CHARMM macromolecular computer 

simulation program. (Brooks, et al., 2009) The BSANN code performing the 

optimization and prediction is in Python computer programming language. 
The descriptor vectors of the small molecules are based on the Coulomb 

matrix and the sum over bond properties, and for the macromolecular 

systems, they take into account the chemical-physical fingerprints of the 

region in the vicinity of each amino acid.  
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Software implementing the methods discussed in this study is free for 
download from the website given below. Also, from the same site, the 

database of all molecular structure and topology files, used in our 

calculations prepared using general AMBER force field, can be accessed via 

the web-based service: https://hkamberajibu.wikidot.com/machine-learning 

Topological Data Analysis 

It has been argued elsewhere (Kamberaj, 2020) that the diversity of the 

feature descriptors of the compound database is essential to increase the 
range of the test data that can be predicted since the machine learning 

methodology works very well in interpolating the new data points, but 

suffers on extrapolating new data outside the range covered by the training 
dataset. Therefore, one of the critical future developments of the automated 

machine learning methodologies is the choice of the training dataset and the 

feature descriptors of the chemical compounds. In Ref. (Kamberaj, 2020), a 

topological data analysis tool is discussed to analyze the feature descriptors 
of the molecules, which is introduced in the following. The topological data 

analysis (TDA) is a field dealing with the topology of the data to understand 

and analyze large and complex datasets. (Carlsson, 2009; Edelsbrunner & 
Harer, 2010) Here, we are investigating the dataset represented by a vector 

of feature descriptors of length  and each data point has a dimension : 

 

               (15) 

For example,  may represent the number of molecules in the dataset and  

number of specific features for each molecule. Moreover, as in Ref. 
(Kamberaj, 2020), we assume that the data of the dataset are hidden in a 

``black box'', for example, a database, and also, they are about to be used by 

a machine learning, which is another ``black box''. In such a situation, 

knowing about the topology of the data (e.g., the sparsity of the data points) 
is of great interest. Note that the TDA is applicable even when the user has 

access to the data; that is, the structure of the molecules of the dataset is 

known as a priory. In such a situation, the TDA can be applied to determine 

the topology of the key feature descriptors for each molecule.  

Note that the TDA is employed to reveal the intrinsic persistent features of 

the DNA and RNA. (Xia, et al., 2015; Mamuye, et al., 2016) Therefore, the 
construction of the topological spaces upon the input data of a machine 

learning approach can be applied for each dimension separately, namely to 

the time series of the form , or for each molecular 

structure, namely . But, it can also apply to both 

dimensions at the same time, for instance, by constructing the input data in 

the form of the following time series obtained by aligning feature descriptors 

of the molecular structures in one dimension: 
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              (16) 

In that case, the input vector of the feature descriptors is a time series of 

length . Then, to determine the topological space for this 

dataset, we first define a distance . The Vietoris-Rips simplicial 

complex  or simply Rips complex for each  as a -

simplex of vertices  such that they satisfy the 

condition that the mutual distances between any pair of the vertices are less 

than : 

                  (17) 

In other words, a -simplex is part of a   for every set of  data 

points that are distinct from each other at a resolution  and hence the Rips 

complexes form a filtration of the data from the dataset at a resolution . 

That is, for any two values of the resolution  and  such that , then 

                       (18) 

where  denotes the subset. All the vertices of a -simplex can be connected 

in a two-dimensional space by undirected edges forming a graph, which can 
have different two-dimensional shapes. Figure 7 illustrates how to build 

simplicial complexes using a set of point cloud data by increasing the 

resolution value . 

 

Figure 7. An illustration of building the simplicial complexes by increasing the 

resolution value . (Kamberaj, 2020)  

The k-simplex dataset points form a loop that is called a hole. By increasing 

the resolution , the shapes grow, and some of the holes die, and some new 

holes are born. This process is the so-called  loop expansion. The interval 

between birth and death of a hole is called persistence interval, indicating 

whether a hole is structurally relevant or just a noise into the data. 
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Persistent homology (PH) is an essential tool of TDA, which aims to 
construct a topological space gradually upon the input dataset, which is done 

by growing shapes based on the input data. Persistent homology measures, in 

this way, the persistence interval of the topological space. The features will 

be identified as persistent if, after the last iteration, they are still present.  

This procedure is analog to systematic coarse-graining and is of crucial 

importance for any attempt at capturing natural feature descriptors in terms 

of a few relevant degrees of freedom, and thus they form the essential 
philosophical basis of a dataset for the machine learning approaches, as shall 

be shown by applying the BSANN algorithm to the current databases. 

(Rahmani & Kamberaj, 2020) 

Data representation 

To characterize the stability of the data, we adopted the mathematical model 

of data representation from Ref. (Bergomi, et al., 2019). According to this 

model, the data are represented as a sets  of bounded real functions : 

              (19) 

where the set  represents the space where the measurements take place, and 

 is the set of the measurements (outputs of an ANN), such as 

                 (20) 

for . That is, for example, a pKa value can be considered 

as a function  from the real values of the feature descriptor vectors in  to 

the real numbers in . The structure of  is that of a topological data space 

characterized by the pseudo-metric , which distinguishes any two points 

 and  in  only if they represent different measurements: (Bergomi, et 

al., 2019) 

                   (21) 

where  and . In Eq. (21), the pseudo-metric 

 is the distance, which does not obey to the property that 

. (Bergomi, et al., 2019)  Furthermore, it is 

assumed that  is compact with respect to the topology of the 

measurements data induced by the distance : 

               (22) 

Moreover, if  is compact and  is complete, then  is also compact. In 

other words, we are assuming that the topology spaces of  and  as the 

subsets of the Euclidean space are closed (that is, they contain the limit 

points), and they are bounded (that is, all their points lie within some fixed 

distance of each other). 
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Consider a bijection function , , such that and hence  is an 

isometry. 

            (23) 

The set of all these functions is said to be -preserving homeomorphisms 

with respect to , denoted as . (Bergomi, et al., 2019) We, further, 

consider a subgroup  of the group , which represents the set of 

transformations  on the data preserving the equivariance. It has been proven 

(Bergomi, et al., 2019) that is a topology group with a pseudo-metric 

defined as: 

                    (24) 

for every . Here, it is assumed that the action of  on  is 

continuous. (Bergomi, et al., 2019) By definition,  gives the distance 

between two homeomorphisms determined as difference of their actions on 

the measurements . Here, the pair  is called a perception pair, and  

is such that if  is complete, then it also is compact with respect to . 

(Bergomi, et al., 2019) 

On the space , we can define the so-called pseudo-distance (Bergomi, et 

al., 2019) (and the references therein),  as: 

                      (25) 

which is associated with the group G acting on the measurements . Note 

that if G is the identity function, that is , then . 

Furthermore, for any  and ,  subgroups of , such that 

, then (Bergomi, et al., 2019): 

              (26) 

Moreover, the operators acting on the data are defined as in Ref. (Bergomi, 

et al., 2019). For that,  and  are two perception pairs with a fixed 

homomorphism , and  a perception map , which is non-

expansive, that is, 

                       (27) 

According to (Bergomi, et al., 2019), a set of  

functions can be introduced of mapping of the perceptions pairs  and 

 related to the transformation : 

                            (28) 

It has been shown that (Bergomi, et al., 2019) if  and  are compact 

concerning and , respectively, then also is compact concerning the 

pseudo-metric: 
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          (29) 

Furthermore, to compare the data under the action of the set , for every 

, the following pseudo-metric can be determined : 

                    (30) 

To simplify the computations, the information of every pair ,  

and  is encoded as a persistence diagram, that is, every function 

 is encoded with a persistence diagram  for  being a natural 

number. Here,   is a collection of discrete points in a plane. A persistence 

diagram can then presented by the persistent Betti numbers, namely . 

(Bergomi, et al., 2019) The matching distance , between the 

persistence diagrams, equals the metric distance  between the 

persistent Betti numbers: 

           (31) 

for every .  

Therefore, can be used as a measure of the distance between the two 

measurements  and  data points in . 

If one considers a non-empty set such that then  fixed a pseudo-

metric is defined as (Bergomi, et al., 2019) 

     (32) 

It is shown elsewhere (Bergomi, et al., 2019) that for a non-empty subset of 

and  there exists a finite subset of , namely such that 

                (33) 

To sample the training data, we follow the procedure shown in Ref. 

(Bergomi, et al., 2019). For that, we denote by a dataset, 

represented by the following index mapping: 

                  (34) 

where  is a subset of the set of natural numbers. Furthermore, it is 

assumed that 

                    (35) 

where  are disjoint subsets of . Furthermore, we denote by  the set of  
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operators acting on the samples , . Then, we randomly chose  

operators  (for ) from the set , and denote this by the set 

, which are such that for every : 

                   (36) 

Here, we fix , as in Ref. (Bergomi, et al., 2019). Then, an operator  is 

chosen when  satisfies the criteria 

                             (37) 

That will create a subset , and the above criteria do not necessarily 

provide maximum diversity among the operators . Therefore, for any class 

, the distance between two operators  and  is calculated as: 

                        (38) 

Then, for every , the pairs  are sorted in ascending order of 

, as suggested elsewhere. (Bergomi, et al., 2019) Then, only one 

operator is chosen for every pair that has a value of , where  

is a fixed threshold. 

Feature descriptor vectors in higher dimensions 

Note that in our discussion above, the feature descriptor vectors for each 

compound are considered time-invariant, and thus they represent only two- 

and three-dimensional feature descriptors of the (macro)molecules. 
However, higher feature descriptor vectors can also be constructed, such as 

four-dimensional feature descriptor vectors, by including the time as the 

fourth dimension. In that case, to build the three-dimension part of the 
feature descriptor vectors, different conformations of the compounds can be 

taken into considerations, for example, as generated from the molecular 

dynamics simulations.  

In that case, the three-dimensional configurations of the compounds 
produced from the simulations can be mapped in a three-dimensional grid, 

where the centers of the grid points will represent the average positions of 

each atom obtained from its fluctuations after the configurations are aligned 

to remove the overall translation and rotation motion of the compounds.  

Therefore, the feature descriptor vectors derived from these average 

structures mapped in a three-dimension grid are translation and rotation 
invariant. A review of such higher-dimensional descriptor vectors is 

discussed in Ref. (Peter, et al., 2019). 
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Conclusions 

In this study, we presented a web-based service for automation of 

(macro)molecular properties predictions using a new algorithm integrated 

into a machine learning approach. That web-service is made up of four 

different databases of both molecular and macromolecular systems 
properties. Each database has a user- friendly interface that provides the 

possibility to upload information into the database, which then is verified by 

the chief administrator of the service. Besides, the clients can perform 
statistics on the web related to each database, obtaining in this way, the 

information contained in each database in a tabular or graph format.  

Also, our web-based service provides other tools and plugins for prediction 
of the properties of the new (macro)molecular systems using a newly 

developed deep-learning approach based on the bootstrapping swarm 

artificial neural network. Furthermore, we showed, in this study, how to 

create an input descriptor vector for the artificial neural network for both 
small molecules and macromolecular systems. The descriptor features 

included both the two-dimensional (macro)molecular fingerprints and the 

three-dimensional structure of the systems. Moreover, we shall present a 
statistical approach of how to estimate the bootstrapping confidence interval 

of the error. (Rahmani & Kamberaj, 2020) 

The application of that new algorithm on our data indicated that the 

topological spaces of molecular properties description vector on the 
relevance or irrelevance of perturbations in the data analysis are crucial; 

those results shall be published in Ref. (Rahmani & Kamberaj, 2020). 

Furthermore, we envision that the persistence homology can be considered 
as necessary as the renormalization group theory in statistical physics when 

applied to equilibrium phenomena in understanding the relevant or irrelevant 

interactions. In this analogy, the resolution scaling factor on the topological 
data analysis can be considered similar to the characteristic correlation 

length scale that determines the judgment of the strong interactions and 

correlations renormalization group theory. 
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