117 BSHN (UT) 32/2022

DIFFERENTIAL EXPRESSION ANALYSIS FOR
TUMOR AND NORMAL COLON TISSUES PROBED
BY OLIGONUCLEOTIDE ARRAYS
ERALDA GJIKA (DHAMO), LULE BASHA (HALLAGI)

Department of Applied Mathematics, Faculty of Natural Science, University of
Tirana

e-mail: eralda.dhamo@fshn.edu.al

Abstract

Differential expression analysis used for detection of genes differentially expressed
between cancer and healthy patients will be done in this study. Distributional
assumption and appropriate multiple testing correction will be used to not miss out
the signal. Combination of statistical methods such as heat map will be used to
summarize the findings of up and down differentially expressed genes. Also PCA
will be used to understand the number of components we need to explain more than
80% of the variation in the data. Cluster techniques will be an option to analyze
samples using all differentially expressed genes. Advantages and limitations of our
proposal will be discussed associated with the report of the classification accuracy of
our chosen approach. We also propose a methodology which may be used to
increase the clustering accuracy through dimension reduction, variable selection or a
combination of both. At the end we implement a dimension reduction technigue,
variable selection, or a combination of both on the differentially expressed genes and
report our clustering performance.
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Pérmbledhje:

Né kété studim do té zhvillohet njé analizé diferenciale e pérdorur pér zbulimin e
gjeneve té réndésishém né pacientét e prekur nga tumori dhe pacientéve té
shéndetshém. Me géllim ruajtjen e informacionit do té zhvillohet njé analizé mbi
shpérndarjen dhe testet e duhura pér té korrigjuar té dhénat. Kombinimi i metodave
statistikore, si hartat e nxehtésisé, do té pérdoren pér t€ pérmbledhur gjetjet e
gjeneve té réndésishém té klasifikuara si té rregulluara lart dhe poshté. Gjithashtu
metoda PCA do té pérdoret pér té kuptuar numrin e komponentéve gé na nevojiten
pér té shpjeguar mé shumé se 80% té variacionit né té dhéna. Teknikat e grupimit do
té jené njé opsion pér té analizuar mostrat duke pérdorur té gjitha gjenet e shprehura
né ményré diferenciale. Pérparésité dhe kufizimet e propozimit toné do té
diskutohen lidhur me raportin e saktésisé sé klasifikimit té gasjes soné. Ne
propozojmé gjithashtu njé metodologji gé mund té pérdoret pér té rritur saktésiné e
grupimit pérmes reduktimit té pérmasave, pérzgjedhjes sé variablave ose njé
kombinimi té t& dyjave. Né fund do té zbatojmé njé tekniké té reduktimit té
pérmasave, pérzgjedhjes sé variablave, njé kombinim té t& dyjave né gjenet e
shprehura né ményré diferenciale dhe do té raportojmé performancén toné té
grupimit.

Fjalé kyce: DEG, FDR, PCA, grupe, shprehje e gjeneve.
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1.1. Introduction and data

Many researches are done especially for differentially expressed genes
pointing out the importance of this pre-processing step for a better process
and evaluation of the genes. This study use data from Alon et al., (1999).
Broad patterns of gene expression revealed by clustering analysis of tumor
and normal colon tissues probed by oligonucleotide arrays.

The dimension of our data are 62 rows and 2000 columns. Which means we
have 2000 genes and 62 samples. From which 22 samples of class 1 which
corresponds to normal tissues and 40 samples of class 2 which corresponds
to tumor tissues. The dataset consists of three main variables:

X is a (62 x 2000) matrix giving the expression levels of 2000 genes for the
62 Colon tissue samples. Each row corresponds to a patient, each column to
a gene.

Y is a numeric vector of length 62 giving the type of tissue sample (tumor or
normal).

gene.names is a vector containing the names of the 2000 genes for the gene
expression matrix X.

Figure 1: Screenshot of the data Colon$X

1.2. Pre-Processing the data Colon X

At this step we will try to have a better understanding of the data. Using
histograms, Boxplot, Q-Q plot and other graphical test we will observe the
distribution of our data and decide if any transformation (normalization)
should be used to improve further analysis. Figure 2 shows the histogram for
the first 4 genes. We do not observe a clear normal distribution but we may
use other graphical visualization to decide.
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Figure 2: Histogram for the first 6 genes

Observing the boxplot of the first 70 genes we obtain Figure 3. We clearly
observe a distribution which is not normal for many of the genes. We may
suggest a normalization of the data based on the distributions showed from
boxplot graphs.
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Figure 4: Boxplot for all genes

When we increase the number of genes from 20 up to 2000 we observe a
change in the distribution. Which seem to be right skewed distributed (fat
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tail or heavy tail distributions are a special probability distribution that
exhibits a large skewness or kurtosis). The first genes seem to be different
from the other genes (box plot and also density plot shows it). So, again here
we confirm the necessity of transforming the data.

Also from the QQplot (Figure 5) we observe some deviations at the tail of
the graph which suggest outliers and so not normally distributed data. For
example, gene 1 and Gene 4 have visible deviations from the theoretical
guantiles and so they may not be normally distributed. (Figure 5)
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Figure 5: QQ plot for the first 9 genes
1.3.

First approach: getNormMatrix(). In the first approach we tried to
normalize the data by using the reference package getNormMatrix(). Based
from the review of this function in R it is mentioned that normalization
without evaluation, TU is recommended for the normalization of gene
expression data, as it has been already ranked as the best method for both
scCRNA-seq and bulk RNA-seq data, Zhenfeng et al., (2019). The results for
this normalization procedure in our data does not show significant
improvements in the distribution of the data.

Transformation and distributional assumption
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Second approach: log2() In the second approach we used logarithm of base
2 to transform the data. And based on the visualization it looks like the
second approach performed better than the first one.

Third approach: ZScore. We have also tried the Z — score transformation on
the data (Z = (X — mean)/sd). But again this process was not successful and
did not overpass log2 transformation. Below are a set of graphs showing
how these proposed transformations performed and how the data look like
after the transformation.
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Figure 6: Density plot comparison of transformation

Figure 6 gives (from left to right) the density plot for the original data,
getNormMatrix, log2 and Zscore transformation. Again here, we observe
that log2 transformation offers a clearer distribution close to normal
distribution of the data.
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Figure 7: Boxplot of 70 genes for log2 transformation
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Figure 7 visualize the boxplot for log2 transformation approach. Observing
all genes, we clearly see different behavior of the first genes (numbered as in
Colon$X) and the last genes. This difference is clear and will be present
when we will discuss in the other steps of gene analysis. Here we may ask:
do we have clear clusters of genes which will help us identify and explain
this behavior among genes?

Materials and methods
1. Multiple testing correction methods

Getting a list of deferentially expressed genes means that we need to choose
an absolute threshold for the log2 fold change (column log2FoldChange in
the output of the functions from R packages) and the adjusted p — value
(column padj). Therefore, any one can make different list of differential
genes based on the selected thresholds. It is common to choose a log2 fold
change threshold of |1] or |2| and an adjusted p — value of 0.01 for instance.
Below we are analyzing the distribution of the p-value by histogram
visualization. Based on the distribution of the p-values (Figure 10) we may
notice that: For the adjusted p — value we have a peak at 0, but we also have
a peak close to 1. What do we do in this situation? What is this behavior
telling us? Is this something that was proceeded from boxplot and density
plot above?

A p—value close to 1 may indicate increase of gene in response to a drug or
they belong to a pathological case! recommendations for this situation are to
filter these genes out beforehand (it’s not like we are losing any
information!), (Crow et al., 2019; Barbey et al., 2020; Barbey et al., 2021;
Rodriguez-Esteban and Jiang, 2017)

NOT adpusted p-value distribution Adjusted p-value distribution
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Figure 8: Histogram pf p-value and adj. p-value of all genes for log2
transformation
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Going through commonly used methods for controlling FWER: Bonferroni's
method, Holm's method and multiple testing error measure known as false
discovery rate FDR. We obtain the following results.

Boeferroni Hedm FOR

Figure 9: Bonferroni Holm FDR on the original data

Observe above the set of genes when directly applied to the original data
which is less than the number of differentially expressed genes obtained after
we use log2 transformation. We have from FDR: 114 Up and 29 Down and
1857 Not-significant genes. (Figure 10). The ID of these genes are those in
rows: Now our subset has 143 genes and 62 samples.
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Figure 10: Bonferroni Holm FDR after log2 transformation

So, again here we observe that FDR is less conservative and because the
other methods give just 24, 25 genes we will decide to go with FDR decision
of considering as deferentially expressed genes 143 from total of 2000. The
output from FDR for the log2 transformed data is shown in Figure 11. By
transforming the data, we went from 3.15% (63 genes) of considered genes
to 7.15% (143 genes from which 29 Down and 114 UP). Volcano plot
(Figure 13) shows how our genes are represented from each method.
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Figure 11: Volcano plot for Bonferroni Holm FDR after log2 transformation
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Figure 12: FDR output after log2 transformation

Figure 12 gives the ID of the genes corresponding to differentially expressed
genes among Tumor and Normal (sample 1 and sample 2) which were
classified by FDR (in total 143 genes).

In R markdown file we have subtracted from the original (2000 genes,
remember: log2 transformed dataset) the genes which were classified from
FDR as the most differentially expressed genes and created a subset which
will be used for further analysis. Figure 13 show a heat map of the genes
before and after we created the subset of the genes selected by FDR.
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Figure 13: Heat map of original, log2 and after FDR subset created (from left to
right)

2. PCA with prcomp()

To check which genes differ the most across the two groups (normal, tumor),
we perform the PCA on the data using the prcomp() function By default, the
prcomp() function centers the variables to have mean zero. By using the
option scale = TRUE, we scale the variables to have standard deviation one.
The rotation matrix provides the principal component loadings; each column
of pr.out$rotation contains the corresponding principal component loading
vector. In this case, the loading can be considered as the weight of each gene
in both the groups. We may notice (Figure 14) that the first component
explains approximately 67% of the variance and together with component 2
they go up to 80% of variance explained. Associated with the output is the
Scree plot (Figure 14) which shows how each Dim is explaining the
variation in the data.

Scree plot
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Figure 14: PCA scree plot

The correlation between a variable and a principal component (PC) is used
as the coordinates of the variable on the PC. The representation of variables
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differs from the plot of the observations: The observations are represented by
their projections, but the variables are represented by their correlations.

The plot in Figure 15 (left) is also known as variable correlation plots. It
shows the relationships between all variables. It can be interpreted as follow:
Positively correlated variables are grouped together. Negatively correlated
variables are positioned on opposite sides of the plot origin (opposed
guadrants). The distance between variables and the origin measures the
quality of the variables on the factor map. Variables that are away from the
origin are well represented on the factor map. The plot to the right shows the
individual contributions to dimensions.

A high cos2 value indicates a good representation of the variable on the
principal component. In this case the variable is positioned close to the
circumference of the correlation circle. A low cos2 indicates that the variable
is not perfectly represented by the PCs. In this case the variable is close to
the center of the circle. It’s possible to color variables by their cos2 values
using the argument col.var = ”cos2”. This produces a gradient colors. In this
case, the argument gradient.cols can be used to provide a custom color. For
instance, gradient.cols = c("white”, ’blue”, “red”’) means that: variables with
low cos2 values will be colored in “white” variables with mid cos2 values
will be colored in “blue” variables with high cos2 values will be colored in
red. We may observe a clear division in two groups for the individuals
(genes). From Figure 2 when clustering in 2 clusters we observe a clear
division of genes but when increasing to 3 clusters the clusters are not
clearly divided (more graphs are in R Markdown file. See Appendix).

3. Variable contribution

Variables that are correlated with PC1 (i.e., Dim.1) and PC2 (i.e., Dim.2) are
the most important in explaining the variability in the data set. Variables that
do not correlated with any PC or correlated with the last dimensions are
variables with low contribution and might be removed to simplify the overall
analysis.

Werla e - 204 _— A

Figure 15: PCA variable and individual contribution to dimensions
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Figure 16: Top 10 contribution to Dim1 and Dim2

The larger the value of the contribution, the more the variable (sample)
contributes to the component.
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Figure 17: PCA variable contribution and first 5 dimensions

As we may observe from the contribution plots (Figure 17) there are
different samples which contribute to Diml and Dim 2. What is
clearly observed is the fact that for Dim1 and Dim2 the number of
genes contributing to is larger compared to other dimensions. This
contribution may be also seen by a barplot of contributions only to Dim
1, only to Dim 2 and Dim1 and Dim2 together (For more see Appendix)
To help understanding the above graph below is shown the bar graph for
the contribution of samples to each of the two dimensions (Diml and
Dim2). Figure 17 shows the contribution of samples (variables) to
each of the first 5 dimensions of PCA.

This result will be used in next section to create a subset of the data
and then use it further to increase accuracy in cluster analysis and
prediction. The color and the sizeof the circle shows the contribution of
the variable (row) to the dimension (column). The dark color shows a
high contribution and the light color shows a lower contribution of the
variable to the dimension. Note also that, the function dimdesc() [in
FactoMineR], for dimension description, can be used to identify the
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most significantly associated variables with a given principal component.
So, the first 2 dimensions will explain up to 80% of the variance of the
data.

4. Cluster Analysis

The distance matrix is a key element when working with clusters since
it helps to identifythe observations which are close to each other and group
them into one cluster. In the previous parts we have used the heatmap
which is also based in one cluster methodologywhich is the hierarchical
cluster. The distance matrix shows some clear patterns of geneswhich are
close and it also shows a division of genes/samples starting from 2 up to
4 clusters (Figure 18).

Figure 18: Distance matrix and clusters (log2 transformed data)

At this part we have considered two main cluster techniques:
Hierarchical and kmeans.

4.1 Hierarchical clustering

If we don’t know how to reason and decide on the number of clusters, we
may use an alternative methodology which is Hierarchical Clustering.
Hierarchical Clustering has an added advantage that it produces a tree
based representation of the observations, calleda Dendogram. To choose
the number of clusters we just draw horizontal lines across the dendogram.
We can form any number of clusters depending on where we draw the break
point. Implementing hierarchical clustering involves one obvious issue.
How do we define the dissimilarity, or linkage? Some of the options
are:

Complete Linkage : Largest distance between observations
Single Linkage : Smallest distance between observations
Average Linkage : Average distance between observations
Centroid: distance between centroids of the observations.
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We may create a dendogram and then also visualize the clusters.
Hierarchical clustering can be divided into two main types: agglomerative
and divisive. Agglomerative clustering: It’s also known as AGNES
(Agglomerative Nesting). It works in a bottom-up way. That is, each
object/observation is initially considered as a single element cluster (leaf). At
each step of the algorithm, the two clusters which are the most similar are
combined into a new bigger cluster (nodes). This procedure is iterated until
all points are member of just one single big cluster (root). The result is a tree
which can be plotted as a dendrogram.

Divisive hierarchical clustering: It’s also known as DIANA (Divise
Analysis) and it works in a top-down approach. The algorithm is an inverse
order of AGNES. It begins with the root, in which all objects/observations
are included in a single cluster. At each step of iteration, the most
heterogeneous cluster is divided into two. The process is iterated until all
objects are in their own cluster (see figure below). These two functions
behave very similarly; however, with the agnes function you can also get
the agglomerative coefficient, which measures the amount of clustering
structure found (values closer to 1 suggest strong clustering structure).

As we can see from Figure 19 the ac value obtained from agnes is 0.76
which is a value close to 1 and also dc value obtained from diana is very
close to 1 (0.88) thus we can say theclusters are accurately formed and
are valid. And also he visualizations suggest: Agneshas 2 to 4 clusters
where the differences are observed. Diana has 2 clear clusters and up to6
very small clusters. No matter which approaches to take either DIANA
or AGNES both will give you clusters with same meaning just the
number of entries in the clusters might differ (Figure 20). As from the
above results a number of cluster from 2 up to 4 will give accurate
resultsin gene classification for the dataset considered. Further we will
also observe suggestions from the kmeans methodology and advice how
to proceed.

Cluster Dendrogram
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Figure 19: Hierarchical clustering dendogram with 2 clusters
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sgnex-dendogram diana—dendogram

Figure 20: Distance matrix and clusters (log2 transformed data)
4.2 Kmeans

Determining Optimal Clusters is one of the challenges when using
kmeans. To help taking a decision we may use three most popular
methods for determining the optimal clusters, which includes: Elbow
method, Silhouette method and Gap statistic. From a start visualization
we may observe that our genes are clearly organized in different
clusters. And using a number of clusters from 2 up to 5 the clusters
remain clear and wedo not have any cross location (overlapping) of the
clusters. (Figure 21) But for a better decision we have also considered the
below methods to decide on the optimal number of clusters. Based on
Figure 22 results for the optimal number of clusters we may advice: The
WSS suggest using 2 or 3 clusters, the silhouette suggest 2 clusters and
the Gapstatistic method suggest 1 or 2 cluster. Analysing also the
kmeans visualizations above we may suggest at this step that 2 clusters
will perform good in classification of the genes.

End note cluster: Clustering is an unsupervised machine learning
algorithm in which we compute analytics mostly without a pre-defined
aim to understand the relationships be- tween the data. Once we get the
understanding and trends in the data we can accordingly take necessary
actions and data-driven decisions. Both methodologies suggested here
have their advantages and disadvantages. So, a step by step reasoning
and further investigation of the data will help on deciding the optimal
number of clusters used for a “best” classification of observations.
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Figure 21: Kmeans for 2:5 clusters
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Figure 22: Optimal number of clusters from FDR subset
5. Different approach

The high amount of data in genomic dataset is extremely important
especially in the pre- processing phase when we want to extract as much
information as we can. But the high dimension of information is not
always good. It happens that even when using machine learning methods
at a certain point, increasing the number of features or dimensions can
decrease the model accuracy.

Depending on the problem and the nature of the data it is possible to
increase the clustering accuracy through dimension reduction or variable
selection. Sometimes an ensemble approach may help to achieve a better
clustering performance.
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PCA- Principal Component Analysis

Dimensionality reduction is defined as way to reduce the complexity of a
model and avoid over-fitting. In our case we may use a feature selection
approach which is done by selectinga subset of the original features (in
our case samples). Based on the above results of PCA we saw that it
suffices two components to explain more than 80% of variation in
data. So, we may select a subset of the features (samples) (observe
correlation plot of Dim1 to Dim 5 and 62 samples). By selecting those
samples which contribute mostly to Dim1 and Dim 2 we may then start
analyzing again the clustering approaches. Let’s bring at our attention
Figure 22. In this visualization we may select those samples who are
contributing more to the first and second dimensions (which together
explain more than 80% of the variation). Returning to PCA results from
factoextra and FactoMineR packages we may obtain the correlations of
variable and dimensions.

Bring to your attention Figure 17, which shows the results of correlation
and link between variables and dimensions. Based on these values we
may proceed and construct a subset based on a given threshold of the
correlation. In this case we have considered correlation coefficient
greater than 0.85. And the sample ID where this correlation is >= 0.85 is
compound of 18 samples. Which are almost 30% of the total nhumber of
samples (62 samples). So, with 30% of the samples we aim to achieve a
higher accuracy for clustering genes in our dataset. (Figure 23)
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Figure 23: Variable correlation from PCA (first 5 Dim)

5.1  Basic test for normality assumption

Below is the graphical output for the normality assumption in our
reduced subset.
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Figure 24: Boxplot after dimension reduction
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Figure 25: Density plot after dimension reduction

5.2  Hierarchical and Kmeans Clusters

The results after dimension reduction for diana and agnes approach are
shown in Figure 26. The coefficients respectively for diana and agnes are
increased (from 0.75 to 0.79 agnes and from 0.87 to 0.91 for diana).
Observing the clustering process for kmeans were PCA is also visualized
we also have an improvement of Dim 1 from 67% to 80.6%. Visually
comparing our first try of clustering using kmeans (Figure 21) and after
dimensional reduction (Figure 27) we do not have a significant change in
the performance, since our individuals (genes) were correctly classified
to a cluster in both steps.

agnes-dendogram diana—-dendogram
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Figure 26: Diana and Agnes after dimension reduction

Dimension reduction is an important step in cluster analysis. Apart
making the high dimensional data addressable it also reduces the
computational cost, and can also provide users with a clearer
visualization of the data of interest. Below is the final visualization of the
heatmap and clusters for both genes and samples. These results may be
used further as a training set for all the data and classify each gene in
the appropriate cluster. Even after dimension reduction we notice two
clusters of individuals (genes) which con- tributes to the explanation of
the variance (Figure 29). Size of the circles shows thecontribution value
and the color shows the value of cos2. To the left and right we observe
the creation of two clouds.
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Figure 27: K-means after dimensionality reduction

Figure 28: Heatmap after dimension reduction
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Figure 29: Individuals contribution after dimension reduction
Conclusion

Differential expression analysis has been used as a pre processing step in
gene analysis data. Distributional assumption to normality and appropriate
multiple testing correction are advised to use with the main aim of not
missing out the information on our data. It is very important that we care
about the assumption of statistical methods and then use them to summarize
the findings. In this study we have used different transformation approach
(standardization, log2, z-score) to achieve a set ofup and down differentially
expressed genes. T

o further analyse the data we have used PCA as a tool to better understand
the number of components needed to explain the variation in the data. We
found that more than 80% of the variation was explained with the first two
components. We also used cluster techniques for a better understanding on
the analysis of potential samples using from our differentially expressed
genes. Advantages of our approach are related to the dimensionality
reduction especially when the amount of information is large. We showed an
increase in variance explanation and cluster accuracy. The approach used in
this study may be useful to other studies on genomic data and genes.

Appendix

R codes with the analysis included in this material and more may be
downloaded from: R Markdown Code Output-Github

https://github.com/EGjika/Statistical-Method-for-Genomic-Data-PCA-
Application/blob/main/Assignment-1-Genomic%20-%20Copy.nb.html



https://github.com/EGjika/Statistical-Method-for-Genomic-Data-PCA-Application/archive/refs/heads/main.zip
https://github.com/EGjika/Statistical-Method-for-Genomic-Data-PCA-Application/blob/main/Assignment-1-Genomic%20-%20Copy.nb.html
https://github.com/EGjika/Statistical-Method-for-Genomic-Data-PCA-Application/blob/main/Assignment-1-Genomic%20-%20Copy.nb.html
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