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Abstract 

Differential expression analysis used for detection of genes differentially expressed 

between cancer and healthy patients will be done in this study. Distributional 

assumption and appropriate multiple testing correction will be used to not miss out 

the signal. Combination of statistical methods such as heat map will be used to 

summarize the findings of up and down differentially expressed genes. Also PCA 

will be used to understand the number of components we need to explain more than 

80% of the variation in the data. Cluster techniques will be an option to analyze 

samples using all differentially expressed genes. Advantages and limitations of our 

proposal will be discussed associated with the report of the classification accuracy of 

our chosen approach. We also propose a methodology which may be used to 

increase the clustering accuracy through dimension reduction, variable selection or a 

combination of both. At the end we implement a dimension reduction technique, 

variable selection, or a combination of both on the differentially expressed genes and 

report our clustering performance. 
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Përmbledhje: 

Në këtë studim do të zhvillohet një analizë diferenciale e përdorur për zbulimin e 

gjeneve të rëndësishëm në pacientët e prekur nga tumori dhe pacientëve të 

shëndetshëm. Me qëllim ruajtjen e informacionit do të zhvillohet një analizë mbi 

shpërndarjen dhe testet e duhura për të korrigjuar të dhënat. Kombinimi i metodave 

statistikore, si hartat e nxehtësisë, do të përdoren për të përmbledhur gjetjet e 

gjeneve të rëndësishëm të klasifikuara si të rregulluara lart dhe poshtë. Gjithashtu 

metoda PCA do të përdoret për të kuptuar numrin e komponentëve që na nevojiten 

për të shpjeguar më shumë se 80% të variacionit në të dhëna. Teknikat e grupimit do 

të jenë një opsion për të analizuar mostrat duke përdorur të gjitha gjenet e shprehura 

në mënyrë diferenciale. Përparësitë dhe kufizimet e propozimit tonë do të 

diskutohen lidhur me raportin e saktësisë së klasifikimit të qasjes sonë. Ne 

propozojmë gjithashtu një metodologji që mund të përdoret për të rritur saktësinë e 

grupimit përmes reduktimit të përmasave, përzgjedhjes së variablave ose një 

kombinimi të të dyjave. Në fund do të zbatojmë një teknikë të reduktimit të 

përmasave, përzgjedhjes së variablave, një kombinim të të dyjave në gjenet e 

shprehura në mënyrë diferenciale dhe do të raportojmë performancën tonë të 

grupimit. 

Fjalë kyçe: DEG, FDR, PCA, grupe, shprehje e gjeneve. 
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1.1.  Introduction and data 

Many researches are done especially for differentially expressed genes 

pointing out the importance of this pre-processing step for a better process 

and evaluation of the genes. This study use data from Alon et al., (1999). 

Broad patterns of gene expression revealed by clustering analysis of tumor 

and normal colon tissues probed by oligonucleotide arrays. 

The dimension of our data are 62 rows and 2000 columns. Which means we 

have 2000 genes and 62 samples. From which 22 samples of class 1 which 

corresponds to normal tissues and 40 samples of class 2 which corresponds 

to tumor tissues. The dataset consists of three main variables: 

X is a (62 x 2000) matrix giving the expression levels of 2000 genes for the 

62 Colon tissue samples. Each row corresponds to a patient, each column to 

a gene. 

Y is a numeric vector of length 62 giving the type of tissue sample (tumor or 

normal). 

gene.names is a vector containing the names of the 2000 genes for the gene 

expression matrix X. 

 

Figure 1: Screenshot of the data Colon$X 

1.2.  Pre-Processing the data Colon X 

At this step we will try to have a better understanding of the data. Using 

histograms, Boxplot, Q-Q plot and other graphical test we will observe the 

distribution of our data and decide if any transformation (normalization) 

should be used to improve further analysis. Figure 2 shows the histogram for 

the first 4 genes. We do not observe a clear normal distribution but we may 

use other graphical visualization to decide. 
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Figure 2: Histogram for the first 6 genes 

Observing the boxplot of the first 70 genes we obtain Figure 3. We clearly 

observe a distribution which is not normal for many of the genes. We may 

suggest a normalization of the data based on the distributions showed from 

boxplot graphs. 

 

Figure 3: Boxplot for the first 70 genes 

 

Figure 4: Boxplot for all genes 

When we increase the number of genes from 20 up to 2000 we observe a 

change in the distribution. Which seem to be right skewed distributed (fat 
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tail or heavy tail distributions are a special probability distribution that 

exhibits a large skewness or kurtosis). The first genes seem to be different 

from the other genes (box plot and also density plot shows it). So, again here 

we confirm the necessity of transforming the data. 

Also from the QQplot (Figure 5) we observe some deviations at the tail of 

the graph which suggest outliers and so not normally distributed data. For 

example, gene 1 and Gene 4 have visible deviations from the theoretical 

quantiles and so they may not be normally distributed. (Figure 5) 

 

Figure 5: QQ plot for the first 9 genes 

1.3. Transformation and distributional assumption 

First approach: getNormMatrix(). In the first approach we tried to 

normalize the data by using the reference package getNormMatrix(). Based 

from the review of this function in R it is mentioned that normalization 

without evaluation, TU is recommended for the normalization of gene 

expression data, as it has been already ranked as the best method for both 

scRNA-seq and bulk RNA-seq data, Zhenfeng et al., (2019). The results for 

this normalization procedure in our data does not show significant 

improvements in the distribution of the data. 
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Second approach: log2() In the second approach we used logarithm of base 

2 to transform the data. And based on the visualization it looks like the 

second approach performed better than the first one. 

Third approach: ZScore. We have also tried the Z − score transformation on 

the data (Z = (X − mean)/sd). But again this process was not successful and 

did not overpass log2 transformation. Below are a set of graphs showing 

how these proposed transformations performed and how the data look like 

after the transformation. 

 

Figure 6: Density plot comparison of transformation 

Figure 6 gives (from left to right) the density plot for the original data, 

getNormMatrix, log2 and Zscore transformation. Again here, we observe 

that log2 transformation offers a clearer distribution close to normal 

distribution of the data.  

 

Figure 7: Boxplot of 70 genes for log2 transformation 
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Figure 7 visualize the boxplot for log2 transformation approach. Observing 

all genes, we clearly see different behavior of the first genes (numbered as in 

Colon$X) and the last genes. This difference is clear and will be present 

when we will discuss in the other steps of gene analysis. Here we may ask: 

do we have clear clusters of genes which will help us identify and explain 

this behavior among genes? 

Materials and methods 

1. Multiple testing correction methods 

Getting a list of deferentially expressed genes means that we need to choose 

an absolute threshold for the log2 fold change (column log2FoldChange in 

the output of the functions from R packages) and the adjusted p − value 

(column padj). Therefore, any one can make different list of differential 

genes based on the selected thresholds. It is common to choose a log2 fold 

change threshold of |1| or |2| and an adjusted p − value of 0.01 for instance. 

Below we are analyzing the distribution of the p-value by histogram 

visualization. Based on the distribution of the p-values (Figure 10) we may 

notice that: For the adjusted p − value we have a peak at 0, but we also have 

a peak close to 1. What do we do in this situation? What is this behavior 

telling us? Is this something that was proceeded from boxplot and density 

plot above? 

A p−value close to 1 may indicate increase of gene in response to a drug or 

they belong to a pathological case! recommendations for this situation are to 

filter these genes out beforehand (it’s not like we are losing any 

information!), (Crow et al., 2019; Barbey et al., 2020; Barbey et al., 2021; 

Rodriguez-Esteban and Jiang, 2017) 

 

Figure 8: Histogram pf p-value and adj. p-value of all genes for log2 

transformation 
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Going through commonly used methods for controlling FWER: Bonferroni′s 

method, Holm′s method and multiple testing error measure known as false 

discovery rate FDR. We obtain the following results. 

 

Figure 9: Bonferroni Holm FDR on the original data 

Observe above the set of genes when directly applied to the original data 

which is less than the number of differentially expressed genes obtained after 

we use log2 transformation. We have from FDR: 114 Up and 29 Down and 

1857 Not-significant genes. (Figure 10). The ID of these genes are those in 

rows: Now our subset has 143 genes and 62 samples. 

 

Figure 10: Bonferroni Holm FDR after log2 transformation 

So, again here we observe that FDR is less conservative and because the 

other methods give just 24, 25 genes we will decide to go with FDR decision 

of considering as deferentially expressed genes 143 from total of 2000. The 

output from FDR for the log2 transformed data is shown in Figure 11. By 

transforming the data, we went from 3.15% (63 genes) of considered genes 

to 7.15% (143 genes from which 29 Down and 114 UP). Volcano plot 

(Figure 13) shows how our genes are represented from each method. 
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Figure 11: Volcano plot for Bonferroni Holm FDR after log2 transformation 

 

Figure 12: FDR output after log2 transformation 

Figure 12 gives the ID of the genes corresponding to differentially expressed 

genes among Tumor and Normal (sample 1 and sample 2) which were 

classified by FDR (in total 143 genes). 

In R markdown file we have subtracted from the original (2000 genes, 

remember: log2 transformed dataset) the genes which were classified from 

FDR as the most differentially expressed genes and created a subset which 

will be used for further analysis. Figure 13 show a heat map of the genes 

before and after we created the subset of the genes selected by FDR. 
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Figure 13: Heat map of original, log2 and after FDR subset created (from left to 

right) 

2. PCA with prcomp() 

To check which genes differ the most across the two groups (normal, tumor), 

we perform the PCA on the data using the prcomp() function By default, the 

prcomp() function centers the variables to have mean zero. By using the 

option scale = TRUE, we scale the variables to have standard deviation one. 

The rotation matrix provides the principal component loadings; each column 

of pr.out$rotation contains the corresponding principal component loading 

vector. In this case, the loading can be considered as the weight of each gene 

in both the groups. We may notice (Figure 14) that the first component 

explains approximately 67% of the variance and together with component 2 

they go up to 80% of variance explained. Associated with the output is the 

Scree plot (Figure 14) which shows how each Dim is explaining the 

variation in the data. 

 

Figure 14: PCA scree plot 

The correlation between a variable and a principal component (PC) is used 

as the coordinates of the variable on the PC. The representation of variables 
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differs from the plot of the observations: The observations are represented by 

their projections, but the variables are represented by their correlations. 

The plot in Figure 15 (left) is also known as variable correlation plots. It 

shows the relationships between all variables. It can be interpreted as follow: 

Positively correlated variables are grouped together. Negatively correlated 

variables are positioned on opposite sides of the plot origin (opposed 

quadrants). The distance between variables and the origin measures the 

quality of the variables on the factor map. Variables that are away from the 

origin are well represented on the factor map. The plot to the right shows the 

individual contributions to dimensions.  

A high cos2 value indicates a good representation of the variable on the 

principal component. In this case the variable is positioned close to the 

circumference of the correlation circle. A low cos2 indicates that the variable 

is not perfectly represented by the PCs. In this case the variable is close to 

the center of the circle. It’s possible to color variables by their cos2 values 

using the argument col.var = ”cos2”. This produces a gradient colors. In this 

case, the argument gradient.cols can be used to provide a custom color. For 

instance, gradient.cols = c(”white”, ”blue”, ”red”) means that: variables with 

low cos2 values will be colored in “white” variables with mid cos2 values 

will be colored in “blue” variables with high cos2 values will be colored in 

red. We may observe a clear division in two groups for the individuals 

(genes). From Figure 2 when clustering in 2 clusters we observe a clear 

division of genes but when increasing to 3 clusters the clusters are not 

clearly divided (more graphs are in R Markdown file. See Appendix). 

3. Variable contribution 

Variables that are correlated with PC1 (i.e., Dim.1) and PC2 (i.e., Dim.2) are 

the most important in explaining the variability in the data set. Variables that 

do not correlated with any PC or correlated with the last dimensions are 

variables with low contribution and might be removed to simplify the overall 

analysis.  

  

Figure 15: PCA variable and individual contribution to dimensions 
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Figure 16: Top 10 contribution to Dim1 and Dim2 

The larger the value of the contribution, the more the variable (sample) 

contributes to the component. 

 

Figure 17: PCA variable contribution and first 5 dimensions 

As we may observe from the contribution plots (Figure 17) there are 

different samples which contribute to Dim1 and Dim 2. What is 

clearly observed is the fact that for Dim 1 and Dim2 the number of 

genes contributing to is larger compared to other dimensions. This 

contribution may be also seen by a barplot of contributions only to Dim 

1, only to Dim 2 and Dim1 and Dim2 together (For more see Appendix) 

To help understanding the above graph below is shown the bar graph for 

the contribution of samples to each of the two dimensions (Dim1 and 

Dim2). Figure 1 7  shows the contribution of samples (variables) to 

each of the first 5 dimensions of PCA.  

This result will be used in next section to create a subset of the data 

and then use it further to increase accuracy in cluster analysis and 

prediction. The color and the size of the circle shows the contribution of 

the variable (row) to the dimension (column). The dark color shows a 

high contribution and the light color shows a lower contribution of the 

variable to the dimension. Note also that, the function dimdesc() [in 

FactoMineR], for dimension description, can be used to identify the 
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most significantly associated variables with a given principal component. 

So, the first 2 dimensions will explain up to 80% of the variance of the 

data. 

4. Cluster Analysis 

The distance matrix is a key element when working with clusters since 

it helps to identify the observations which are close to each other and group 

them into one cluster. In the previous parts we have used the heatmap 

which is also based in one cluster methodology which is the hierarchical 

cluster. The distance matrix shows some clear patterns of genes which are 

close and it also shows a division of genes/samples starting from 2 up to 

4 clusters  (Figure 18). 

 

Figure 18: Distance matrix and clusters (log2 transformed data) 

At this part we have considered two main cluster techniques: 

Hierarchical and kmeans. 

4.1 Hierarchical clustering 

If we don’t know how to reason and decide on the number of clusters, we 

may use an alternative methodology which is Hierarchical Clustering. 

Hierarchical Clustering has an added advantage that it produces a tree 

based representation of the observations, called a Dendogram. To choose 

the number of clusters we just draw horizontal lines across the dendogram. 

We can form any number of clusters depending on where we draw the break 

point. Implementing hierarchical clustering involves one obvious issue. 

How do we define the dissimilarity, or linkage? Some of the options 

are: 

Complete Linkage : Largest distance between observations  

Single Linkage : Smallest distance between observations  

Average Linkage : Average distance between observations 

Centroid: distance between centroids of the observations.  
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We may create a dendogram and then also visualize the clusters. 

Hierarchical clustering can be divided into two main types: agglomerative 

and divisive. Agglomerative clustering: It’s also known as AGNES 

(Agglomerative Nesting). It works in a bottom-up way. That is, each 

object/observation is initially considered as a single element cluster (leaf). At 

each step of the algorithm, the two clusters which are the most similar are 

combined into a new bigger cluster (nodes). This procedure is iterated until 

all points are member of just one single big cluster (root). The result is a tree 

which can be plotted as a dendrogram.  

Divisive hierarchical clustering: It’s also known as DIANA (Divise 

Analysis) and it works in a top-down approach. The algorithm is an inverse 

order of AGNES. It begins with the root, in which all objects/observations 

are included in a single cluster. At each step of iteration, the most 

heterogeneous cluster is divided into two. The process is iterated until all 

objects are in their own cluster (see figure below). These two functions 

behave very similarly; however, with the agnes function you can also get 

the agglomerative coefficient, which measures the amount of clustering 

structure found (values closer to 1 suggest strong clustering structure).  

As we can see from Figure 19 the ac value obtained from agnes is 0.76 

which is a value close to 1 and also dc value obtained from diana is very 

close to 1 (0.88) thus we can say the clusters are accurately formed and 

are valid. And also he visualizations suggest: Agnes has 2 to 4 clusters 

where the differences are observed. Diana has 2 clear clusters and up to 6 

very small clusters. No matter which approaches to take either DIANA 

or AGNES both will give you clusters with same meaning just the 

number of entries in the clusters might differ (Figure 20). As from the 

above results a number of cluster from 2 up to 4 will give accurate 

results in gene classification for the dataset considered. Further we will 

also observe suggestions from the kmeans methodology and advice how 

to proceed. 

 

Figure 19: Hierarchical clustering dendogram with 2 clusters 
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Figure 20: Distance matrix and clusters (log2 transformed data) 

4.2 Kmeans 

Determining Optimal Clusters is one of the challenges when using 

kmeans. To help taking a decision we may use three most popular 

methods for determining the optimal clusters, which includes: Elbow 

method, Silhouette method and  Gap statistic. From a start visualization 

we may observe that our genes are clearly organized in different 

clusters. And using a number of clusters from 2 up to 5 the clusters 

remain clear and we do not have any cross location (overlapping) of the 

clusters. (Figure 21) But for a better decision we have also considered the 

below methods to decide on the optimal number of clusters.  Based on 

Figure 22 results for the optimal number of clusters we may advice: The 

WSS suggest using 2 or 3 clusters, the silhouette suggest 2 clusters and 

the Gapstatistic method suggest 1 or 2 cluster. Analysing also the 

kmeans visualizations above we may suggest at this step that 2 clusters 

will perform good in classification of the genes. 

End note cluster: Clustering is an unsupervised machine learning 

algorithm in which we compute analytics mostly without a pre-defined 

aim to understand the relationships be- tween the data. Once we get the 

understanding and trends in the data we can accordingly take necessary 

actions and data-driven decisions. Both methodologies suggested here 

have their advantages and disadvantages. So, a step by step reasoning 

and further investigation of the data will help on deciding the optimal 

number of clusters used for a “best” classification of observations. 
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Figure 21: Kmeans for 2:5 clusters 

 

 

Figure 22: Optimal number of clusters from FDR subset 

5. Different approach 

The high amount of data in genomic dataset is extremely important 

especially in the pre- processing phase when we want to extract as much 

information as we can. But the high dimension of information is not 

always good. It happens that even when using machine learning methods 

at a certain point, increasing the number of features or dimensions can 

decrease the model accuracy. 

Depending on the problem and the nature of the data it is possible to 

increase the clustering accuracy through dimension reduction or variable 

selection. Sometimes an ensemble approach may help to achieve a better 

clustering performance. 
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PCA- Principal Component Analysis 

Dimensionality reduction is defined as way to reduce the complexity of a 

model and avoid over-fitting. In our case we may use a feature selection 

approach which is done by selecting a subset of the original features (in 

our case samples). Based on the above results of PCA we saw that it 

suffices two components to explain more than 80% of variation in 

data. So, we may select a subset of the features (samples) (observe 

correlation plot of Dim1 to Dim 5 and 62 samples). By selecting those 

samples which contribute mostly to Dim1 and Dim 2 we may then start 

analyzing again the clustering approaches. Let’s bring at our attention 

Figure 22. In this visualization we may select those samples who are 

contributing more to the first and second dimensions (which together 

explain more than 80% of the variation). Returning to PCA results from 

factoextra and FactoMineR packages we may obtain the correlations of 

variable and dimensions. 

Bring to your attention Figure 17, which shows the results of correlation 

and link between variables and dimensions. Based on these values we 

may proceed and construct a subset based on a given threshold of the 

correlation. In this case we have considered correlation coefficient 

greater than 0.85. And the sample ID where this correlation is >= 0.85 is 

compound of 18 samples. Which are almost 30% of the total number of 

samples (62 samples). So, with 30% of the samples we aim to achieve a 

higher accuracy for clustering genes in our dataset. (Figure 23) 

Figure 23: Variable correlation from PCA (first 5 Dim) 

 

5.1 Basic test for normality assumption 

Below is the graphical output for the normality assumption in our 

reduced subset. 
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Figure 24: Boxplot after dimension reduction 

Figure 25: Density plot after dimension reduction 

5.2 Hierarchical and Kmeans Clusters 

The results after dimension reduction for diana and agnes approach are 

shown in Figure 26. The coefficients respectively for diana and agnes are 

increased (from 0.75 to 0.79 agnes and from 0.87 to 0.91 for diana). 

Observing the clustering process for kmeans were PCA is also visualized 

we also have an improvement of Dim 1 from 67% to 80.6%. Visually 

comparing our first try of clustering using kmeans (Figure 21) and after 

dimensional reduction (Figure 27) we do not have a significant change in 

the performance, since our individuals (genes) were correctly classified 

to a cluster in both steps. 
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Figure 26: Diana and Agnes after dimension reduction 

Dimension reduction is an important step in cluster analysis. Apart 

making the high dimensional data addressable it also reduces the 

computational cost, and can also provide users with a clearer 

visualization of the data of interest. Below is the final visualization of the 

heatmap and clusters for both genes and samples. These results may be 

used further as a training set for all the data and classify each gene in 

the appropriate cluster. Even after dimension reduction we notice two 

clusters of individuals (genes) which con- tributes to the explanation of 

the variance (Figure 29). Size of the circles shows the contribution value 

and the color shows the value of cos2. To the left and right we observe 

the creation of two clouds.   

 

Figure 27: K-means after dimensionality reduction 

 

 

Figure 28: Heatmap after dimension reduction 
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Figure 29: Individuals contribution after dimension reduction 

 

 

Conclusion  

Differential expression analysis has been used as a pre processing step in 

gene analysis data. Distributional assumption to normality and appropriate 

multiple testing correction are advised to use with the main aim of not 

missing out the information on our data. It is very important that we care 

about the assumption of statistical methods and then use them to summarize 

the findings. In this study we have used different transformation approach 

(standardization, log2, z-score) to achieve a set ofup and down differentially 

expressed genes. T 

o further analyse the data we have used PCA as a tool to better understand 

the number of components needed to explain the variation in the data. We 

found that more than 80% of the variation was explained with the first two 

components. We also used cluster techniques for a better understanding on 

the analysis of potential samples using from our differentially expressed 

genes. Advantages of our approach are related to the dimensionality 

reduction especially when the amount of information is large. We showed an 

increase in variance explanation and cluster accuracy. The approach used in 

this study may be useful to other studies on genomic data and genes.  

Appendix 

R codes with the analysis included in this material and more may be 

downloaded from: R Markdown Code Output-Github  

https://github.com/EGjika/Statistical-Method-for-Genomic-Data-PCA-

Application/blob/main/Assignment-1-Genomic%20-%20Copy.nb.html  

 

 

 

https://github.com/EGjika/Statistical-Method-for-Genomic-Data-PCA-Application/archive/refs/heads/main.zip
https://github.com/EGjika/Statistical-Method-for-Genomic-Data-PCA-Application/blob/main/Assignment-1-Genomic%20-%20Copy.nb.html
https://github.com/EGjika/Statistical-Method-for-Genomic-Data-PCA-Application/blob/main/Assignment-1-Genomic%20-%20Copy.nb.html
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