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Abstract 

This article introduced a new distribution called the Marshall-Olkin Topp-

Leone Half-Logistic-Burr type X, using the Marshall-Olkin Topp-Leone Half-

Logistic-G family of distributions. We deduce some of its statistical properties. 

Choosing the most optimal estimators is one of the fundamental concerns in 

the theory of parameter estimation. We use several estimation approaches, 

including maximum likelihood estimation, least squares estimation, weighted 

least estimation, L-moment estimation, Maximum Product Spacing estimation, 

and minimal distance procedures, to estimate the parameters for the 

distribution. We will analyze simulation studies that evaluate the efficiency 

levels of different estimators using the Kolmogorov-Smirnov test. Finally, we 

conduct an analysis on a real COVID-19 data set in Albania to showcase the 

flexibility of our proposed model in contrast to the accuracy achieved by other 

alternative distributions. 

Key words: Burr type X distribution, Statistical Properties, Kolmogorov-

Smirnov test, COVID-19 

Përmbledhje 

Në këtë punim, do të tregojmë një shpërndarje të zgjeruar e emërtuar 

Marshall-Olkin Topp-Leone Half-Logistic-Burr të llojit X, e cila rrjedh nga 

një familje shpërndarjeje Marshall-Olkin Topp-Leone Half-Logistic-G. Për 

këtë shpërndarje do të tregohen disa veti statistikore. Në teorinë e vlerësuesve 

pikësorë zgjedhja e një vlerësuesi më të mirë ështe një problem kryesor. Për të 

vlerësuar parametrat e panjohur të shpërndarjes Marshall-Olkin Topp-Leone 
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Half-Logistic-Burr të llojit X do të trajtojmë disa metoda vlerësimi duke 

përfshirë, metodën e përgjagjësisë maksimale, metodën e katrorëve më të 

vegjël, metodën e katrorëve më të vegjël sipas peshave, vlerësuesit e L-

momenteve, vlerësuesit e prodhimit të distancave maksimale, vlerësuesit e 

distancave minimale. Në do të analizojmë shkallën e efikasitet të secilave prej 

metoda të mësipërme duke u mbeshtetur në testin e Kolmogorov-Smirnov-it. 

Në fund, do të analizojmë disa të dhëna reale të COVID-19 në Shqipëri për të 

treguar fleksibilitetin e modelit tonë kundrejt disa shpërdarjeve të tjera 

alternative. 

Fjalë kyçe: Burr e llojit X, Veti Statistikore, Testi Kolmogorov-Smirnov, 

COVID-19 

1. Introduction 

Burr (Irving, 1942) introduced twelve different forms of cumulative 

distribution functions for modelling data. Among those twelve distribution 

functions, Burr-Type X and Burr-Type XII received the maximum attention. 

There is a thorough analysis of Burr-Type XII distribution (Rodriguez, 1977), 

see also (Wingo, 1993) for a nice account of it.  

In this paper, we consider the two-parameter Burr-Type X distribution. Surles 

and Padgett, (Surles and Padgett, 2001) proposed a new extension for Burr 

type X one parameter by adding scale parameter named Burr type X with two 

parameters or Burr type X distribution. Many authors have studied Burr type 

X distribution widely and applied them in different areas such as, (Merovci et 

al., 2016), (Raqab and Kundu, 2006), (Shayib and Haghighi, 2011), (Khaleel 

et al., 2016) and many others. 

Definition 1.1 A random variable 𝑋 has a two-parameter Burr-Type X 

distribution if cumulative distribution function (CDF) is given by: 

𝐹(𝑥: 𝛼, 𝜃) = (1 − 𝑒−(𝜃𝑥)
2
)
𝛼

; 𝑥 > 0, 𝛼 > 0, 𝜃 > 0  (1) 

where 𝛼 and 𝛽 are shape and scale parameters. Also, the probability density 

function (pdf) of the Burr type X distribution corresponding to the (1) is: 

𝑓(𝑥: 𝛼, 𝜃) = 2𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
(1 − 𝑒−(𝜃𝑥)

2
)
𝛼−1

; 𝑥 > 0, 𝛼 > 0, 𝜃 > 0

  (2) 

The need for more flexible models that can explain and provide a better fit to 

real life data sets has motivated many researchers to develop new generalized 

distributions by extending the classical ones. Marshall and Olkin, (Marshall 
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and Olkin, 1997) introduced a new method of adding a parameter into a family 

of distributions. Addition of parameters to an existing baseline distribution has 

proven to be an effective technique for improving the flexibility of new 

families of distributions (Barreto-Souza et al., 2013). The Marshall-Olkin 

technique has been applied to build several well-known distributions which 

include papers by, (Cordeiro et al., 2011), (Santos-Neo et al., 2014), 

(Chakraborty et al., 2017), and many others. 

In 2023, Sengweni et al. introduced a generator of a continuous distribution 

called the Marshall-Olkin Topp-Leone Half-Logistic-G (MO-TLHL-G) 

family of distributions with pdf and cdf given by: 

𝑓(𝑥: 𝑏, 𝛿, 𝜑) =
4𝑏𝛿𝑔(𝑥:𝜑)𝐺̅(𝑥:𝜑)(1−𝐺̅2(𝑥:𝜑))

𝑏−1

(1+(1−[1−𝐺̅2(𝑥:𝜑)]𝑏))
2
{1−(1−𝛿)(1−[

[1−𝐺̅2(𝑥:𝜑)]
𝑏

1+(1−[1−𝐺̅2(𝑥:𝜑)]
𝑏
)
])}

2 (3) 

and  

𝐹(𝑥: 𝑏, 𝛿, 𝜑) =

[1−𝐺̅2(𝑥:𝜑)]
𝑏

(1+(1−[1−𝐺̅2(𝑥:𝜑)]
𝑏
))

1−(1−𝛿)(1−[
[1−𝐺̅2(𝑥:𝜑)]

𝑏

1+(1−[1−𝐺̅2(𝑥:𝜑)]
𝑏
)
])

 (4) 

for 𝛿, 𝑏 > 0 and 𝜑 is a parameter vector for the baseline distribution 𝐺(∙). 

In this paper, we propose a new extension of Burr type X distribution with 

more flexibility than the baseline (1) and (2). The new distribution can be 

applied to different kinds of data because the four shape parameters can 

control the tail of data. The new distribution has more sub-models when 

compared with baseline distribution and hence it allows us to study more 

comprehensive structural properties. Thus, the aims of this work are to explore 

and study the mathematical properties of the new distribution, which is an 

extended Burr type X distribution and to prove the new model is more flexible 

than other models by applying it to real data using a goodness of fit test for 

real data. 

Definition 1.2 A random variable X is said to have a Marshall-Olkin Topp-

Leone Half-Logistic- Burr type X distribution with a vector parameter 

(𝑏, 𝛿, 𝛼, 𝜃)  if its probability density function is defined as: 
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𝑓(𝑥: 𝑏, 𝛿, 𝛼, 𝜃) =

8𝑏𝛿𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
(1−𝑒−(𝜃𝑥)

2
)
𝛼−1

(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)((1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)
2

)

𝑏−1

(1+(1−[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)
2

]

𝑏

))

2

{
 
 

 
 

1−(1−𝛿)

(

 
 
 
 

1−

[
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

1+(1−[(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

)

]
 
 
 
 
 
 

)

 
 
 
 

}
 
 

 
 
2 (5) 

and cumulative distribution function 

𝐹(𝑥: 𝑏, 𝛿, 𝛼, 𝜃) =

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

(

 
 
1+(1−[1−(1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)

2

]

𝑏

)

)

 
 

1−(1−𝛿)

(

 
 
 
 

1−

[
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

1+(1−[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

)

]
 
 
 
 
 
 

)

 
 
 
 

 (6) 

respectively, for 𝑏 > 0, 𝛿 > 0, 𝛼 > 0, 𝜃 > 0. 

Figures 1 and Figures 2 illustrate some of the possible shapes of the(pdf) and 

(cdf) of the Marshall-Olkin Topp-Leone Half-Logistic- Burr type X (MO-

TLHL-BX) distribution for selected values of the parameters 𝑏, 𝛿, 𝛼 and 𝜃. 
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Figure 1. Probability Density Function (pdf) of the MO-TLHL-BX. 

 

Figure 2. Cumulative Density Function(cdf) of the MO-TLHL-BX. 
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2 Mathematical Properties 

2.1 Sub-models 

It is worth noting that many sub-models can be obtained as special cases of 

the MO-TLHL-BX distribution by selecting specific values of parameters in 

equation (5). 

If 𝛿 = 1, we obtain a new family of distributions called the Topp-Leone Half-

Logistic- BX (TLHL-G) distribution with pdf given by: 

𝑓(𝑥: 𝑏, 𝛿 = 1, 𝛼, 𝜃) = 2𝑏2𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
(1 − 𝑒−(𝜃𝑥)

2
)
𝛼−1

× (1 − (1 − (1 −

𝑒−(𝜃𝑥)
2
)
𝛼
)
2
)
𝑏−1

× 𝑒𝑥𝑝 [−(
[1−(1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)
2

]

𝑏

1−[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)
2

]

𝑏)] (7) 

If 𝛿 = 𝑏 = 1, we obtain a new family of distributions with pdf given by: 

𝑓(𝑥: 𝑏 = 1, 𝛿, 𝛼, 𝜃) = 4𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
𝑒𝑥𝑝 [−(

1−[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)
2

]

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)
2

]

)] (8) 

 

If 𝑏 = 1, we obtain a new family of distributions with pdf given by: 

𝑓(𝑥: 𝑏 = 1, 𝛿, 𝛼, 𝜃) =

2𝛿2𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
𝑒𝑥𝑝

[
 
 
 
 
 

−

(

  
 
1−[1−(1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)

2

]

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

)

  
 

]
 
 
 
 
 

[
 
 
 
 
 

1−(1−𝛿)𝑒𝑥𝑝

[
 
 
 
 

−

(

 
 
1−[1−(1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)

2

]

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

)

 
 

]
 
 
 
 

]
 
 
 
 
 
2  (9) 

2.2 Survival Function 

The reliability function (survival function) of the Marshall-Olkin Topp-Leone 

Half-Logistic- Burr type X (MO-TLHL-BX) distribution is given by: 
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𝑅(𝑥; 𝑏, 𝛿, 𝛼, 𝜃) = 1 −

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

(

 
 
1+(1−[1−(1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)

2

]

𝑏

)

)

 
 

1−(1−𝛿)

(

 
 
 
 

1−

[
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

1+(1−[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

)

]
 
 
 
 
 
 

)

 
 
 
 

 (10) 

2.3 Hazard Function 

The hazard rate function (failure rate) of the Marshall-Olkin Topp-Leone Half-

Logistic- Burr type X (MO-TLHL-BX) distribution is given by: 

ℎ(𝑥; 𝑏, 𝛿, 𝛼, 𝜃) =

8𝑏𝛿𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
(1−𝑒−(𝜃𝑥)

2
)
𝛼−1

(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)((1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)

2

)

𝑏−1

(

 
 
1+(1−[1−(1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)

2

]

𝑏

)

)

 
 

2

{
 
 
 

 
 
 

1−(1−𝛿)

(

 
 
 
 
 

1−

[
 
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

1+(1−[(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

)

]
 
 
 
 
 
 
 

)

 
 
 
 
 

}
 
 
 

 
 
 
2

1−

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

(

 
 
1+(1−[1−(1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)

2

]

𝑏

)

)

 
 

1−(1−𝛿)

(

 
 
 
 
 

1−

[
 
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

1+(1−[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

)

]
 
 
 
 
 
 
 

)

 
 
 
 
 

 (11) 

2.4 Some Useful Expression 

In this section, expansion for the pdf of the MO-TLHL-BX distribution is 

derived, which are useful to study several statistical properties of MO-TLHL-

BX distribution. The generalized binomial is used to find the expression of the 

pdf. 

𝑓(𝑥: 𝑏, 𝛿, 𝛼, 𝜃) = 8𝑏𝛿𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
(1 − 𝑒−(𝜃𝑥)

2
)
𝛼−1

(1 − (1 − 𝑒−(𝜃𝑥)
2
)
𝛼
) × 
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(1 − (1 − (1 − 𝑒−(𝜃𝑥)
2
)
𝛼
)
𝑏−1
)(1 + (1 − (1 − (1 − (1 − 𝑒−(𝜃𝑥)

2
)
𝛼
)
2
)
𝑏

))

−2

×

{
 

 
1 − (1 − 𝛿)(1 −

[
 
 
 (1−(1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)
2

)

𝑏

1+(1−(1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)
2

)

𝑏

)
]
 
 
 
)

}
 

 
−2

⏟                                    

→ 𝑎 (12) 

Using the generalized binomial series expansion for a, we have: 

𝑎 = ∑ (−1)𝑙+𝑘∞
𝑙,𝑘=0 (

−2
𝑙
) (
𝑙
𝑘
) (1 − 𝛿)𝑙

(1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)
2

)

𝑏𝑘

[1+(1−(1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)
2

)

𝑏

)]

𝑘  

Substituting 𝑎 in equation (12) we have: 

𝑓(𝑥: 𝑏, 𝛿, 𝛼, 𝜃) = 8𝑏𝛿𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
(1 − 𝑒−(𝜃𝑥)

2
)
𝛼−1

(1 − (1 −

𝑒−(𝜃𝑥)
2
)
𝛼
)∑ (−1)𝑙+𝑘∞

𝑙,𝑘=0 (
−2
𝑙
) (
𝑙
𝑘
) (1 − 𝛿)𝑙 (1 − (1 − (1 −

𝑒−(𝜃𝑥)
2
)
𝛼
)
2
)
𝑏(𝑘+1)−1

× [1 + (1 − (1 − (1 − (1 − 𝑒−(𝜃𝑥)
2
)
𝛼
)
2
)
𝑏

)]

−(𝑘+2)

⏟                                
→

𝑏  (13) 

Applying the generalized binomial series expansion on b, we have: 

𝑏 = ∑(−1)𝑖
∞

𝑖,𝑗=0

(
−(𝑘 + 2)

𝑗
) (
𝑗
𝑖
) (1 − (1 − (1 − 𝑒−(𝜃𝑥)

2
)
𝛼
)
2
)
𝑏𝑖

 

Substituting 𝑏 in equation (13), we have: 

 𝑓(𝑥: 𝑏, 𝛿, 𝛼, 𝜃) = 8𝑏𝛿𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
(1 − 𝑒−(𝜃𝑥)

2
)
𝛼−1

× 

× (1 − (1 − 𝑒−(𝜃𝑥)
2
)
𝛼
)∑ (−1)𝑙+𝑘∞

𝑙,𝑘=0 (
−2
𝑙
) (
−(𝑘 + 2)

𝑗
) (
𝑗
𝑖
) (
𝑙
𝑘
) (1 − 𝛿)𝑙 ×

(1 − (1 − (1 − 𝑒−(𝜃𝑥)
2
)
𝛼
)
2
)
𝑏(𝑘+𝑖+1)−1

⏟                          
→ 𝑐  (14) 

Applying the generalized binomial series expansion on 𝑐, we have: 

𝑐 = ∑(−1)𝑞 (
𝑏(𝑘 + 𝑖 + 1) − 1

𝑞
) ((1 − (1 − 𝑒−(𝜃𝑥)

2
)
𝛼
))
2𝑞

∞

𝑞=0
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Substituting 𝑐 in equation (14) we obtain: 

𝑓(𝑥: 𝑏, 𝛿, 𝛼, 𝜃) = 8𝑏𝛿𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
 

× (1

− 𝑒−(𝜃𝑥)
2
)
𝛼−1

∑ (−1)𝑙+𝑘+𝑖+𝑞
∞

𝑙,𝑘,𝑖,𝑗,𝑞=0

(
−2
𝑙
) (
−(𝑘 + 2)

𝑗
) (
𝑗
𝑖
) (
𝑙
𝑘
) (
𝑏(𝑘 + 𝑖 + 1) − 1

𝑞
)

× 

 × (1 − 𝛿)𝑙 ((1 − (1 − 𝑒−(𝜃𝑥)
2
)
𝛼
))
2𝑞+1

 (15) 

Using the binomial series expansion, we have 

((1 − (1 − 𝑒−(𝜃𝑥)
2
)
𝛼
))
2𝑞+1

= ∑(−1)𝑝
∞

𝑝=0

(
2𝑞 + 1
𝑝

) ((1 − 𝑒−(𝜃𝑥)
2
)
𝛼
)
𝑝
 

So, the probability density function of the MO-TLHL-BX distribution can be 

expressed as: 

𝑓(𝑥: 𝑏, 𝛿, 𝛼, 𝜃) = 8𝑏𝛿𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
× (1 − 𝑒−(𝜃𝑥)

2
)
𝛼−1

× 

∑ (−1)𝑙+𝑘+𝑖+𝑞+𝑝
∞

𝑙,𝑘,𝑖,𝑗,𝑞=0

(
−2
𝑙
) (
−(𝑘 + 2)

𝑗
) (
𝑗
𝑖
) (
𝑙
𝑘
) (
𝑏(𝑘 + 𝑖 + 1) − 1

𝑞
) × 

 (
2𝑞 + 1
𝑝

) (1 − 𝛿)𝑙 ((1 − 𝑒−(𝜃𝑥)
2
)
𝛼
)
𝑝

 (16) 

2.5 Order Statistics 

For 𝑋1, 𝑋2, … , 𝑋𝑛 i.i.d. continous random variables with pdf (5) and cdf (6) the 

density of the maximum order is 

 𝑝(𝑛)(𝑥) = 𝑛𝑝(𝑥)𝐹(𝑥)
𝑛−1 =

𝑛

(

 
 
 
 
 
 
 

8𝑏𝛿𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
(1−𝑒−(𝜃𝑥)

2
)
𝛼−1

(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)((1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)
2

)

𝑏−1

(1+(1−[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)
2

]

𝑏

))

2

{
 
 

 
 

1−(1−𝛿)

(

 
 
 
 

1−

[
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

1+(1−[(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

)

]
 
 
 
 
 
 

)

 
 
 
 

}
 
 

 
 
2

)

 
 
 
 
 
 
 

× 
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(

 
 
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

(

 
 
1+(1−[1−(1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)

2

]

𝑏

)

)

 
 

1−(1−𝛿)

(

 
 
 
 

1−

[
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

1+(1−[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

)

]
 
 
 
 
 
 

)

 
 
 
 

)

 
 
 
 
 
 
 
 

𝑛−1

  (17) 

For 𝑋1, 𝑋2, … , 𝑋𝑛 iid continous random variables with pdf (5) and cdf (6) the 

density of the minimum order is 

𝑝(1)(𝑥) = 𝑛𝑝(𝑥)(1 − 𝐹(𝑥))
𝑛−1

=

𝑛

(

 
 
 
 
 
 
 

8𝑏𝛿𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
(1−𝑒−(𝜃𝑥)

2
)
𝛼−1

(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)((1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)
2

)

𝑏−1

(1+(1−[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)
2

]

𝑏

))

2

{
 
 

 
 

1−(1−𝛿)

(

 
 
 
 

1−

[
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

1+(1−[(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

)

]
 
 
 
 
 
 

)

 
 
 
 

}
 
 

 
 
2

)

 
 
 
 
 
 
 

×  

(

 
 
 
 
 
 
 
 

1 −

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

(

 
 
1+(1−[1−(1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)

2

]

𝑏

)

)

 
 

1−(1−𝛿)

(

 
 
 
 

1−

[
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

1+(1−[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

)

]
 
 
 
 
 
 

)

 
 
 
 

)

 
 
 
 
 
 
 
 

𝑛−1

  (18) 

For 𝑋1, 𝑋2, … , 𝑋𝑛 iid continous random variables with pdf (5) and cdf (6) the 

density of the kth order is: 
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𝑝(𝑘)(𝑥) = 𝑛𝑝(𝑥) (
𝑛 − 1
𝑘 − 1

)𝐹(𝑥)𝑘−1(1 − 𝐹(𝑥))
𝑛−𝑘

=

(
𝑛 − 1
𝑘 − 1

)

(

 
 
 
 
 
 
 

8𝑏𝛿𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
(1−𝑒−(𝜃𝑥)

2
)
𝛼−1

(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)((1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)
2

)

𝑏−1

(1+(1−[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)
2

]

𝑏

))

2

{
 
 

 
 

1−(1−𝛿)

(

 
 
 
 

1−

[
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

1+(1−[(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

)

]
 
 
 
 
 
 

)

 
 
 
 

}
 
 

 
 
2

)

 
 
 
 
 
 
 

×

×

(

 
 
 
 
 
 
 
 

1−

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

(

 
 
1+(1−[1−(1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)

2

]

𝑏

)

)

 
 

1−(1−𝛿)

(

 
 
 
 

1−

[
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

1+(1−[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

)

]
 
 
 
 
 
 

)

 
 
 
 

)

 
 
 
 
 
 
 
 

𝑛−𝑘

×

(

 
 
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

(

 
 
1+(1−[1−(1−(1−𝑒−(𝜃𝑥)

2
)
𝛼
)

2

]

𝑏

)

)

 
 

1−(1−𝛿)

(

 
 
 
 

1−

[
 
 
 
 
 
 

[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

1+(1−[1−(1−(1−𝑒−(𝜃𝑥)
2
)
𝛼
)

2

]

𝑏

)

]
 
 
 
 
 
 

)

 
 
 
 

)

 
 
 
 
 
 
 
 

𝑘−1

 

  (19) 

2.6 Rényi Entropy 

Rényi entropy is a quantity utilized in information theory that serves to 

generalize several entropy concepts, such as Hartley entropy, Shannon 

entropy, collision entropy, and mine-entropy. Rényi entropy, as proposed by 

Alfréd Rényi in 1960, derives its name from the scientist who sought to 

identify the most general method of quantifying information while 

maintaining additivity for independent events. The notion of generalized 
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dimensions is founded upon the Rényi entropy within the domain of fractal 

dimension estimation. Entropy as a Rényi value is significant in statistics and 

ecology as a measure of diversity. Additionally significant in quantum 

information, the Rényi entropy can be utilized as a quantification of 

entanglement. The explicit calculation of the Rényi entropy as a function of α 

is feasible in the Heisenberg XY spin chain model due to the automorphic 

nature of the function with respect to a specific subgroup of the modular group. 

As it relates to random extractors, min-entropy is a term used in theoretical 

computer science.  

Rényi entropy 𝐼𝑅(𝜈) for the Marshall-Olkin Topp-Leone Half-Logistic- Burr 

type X (MO-TLHL-BX) distribution is given by: 

𝐼𝑅(𝜈) = (1 − 𝜈)
−1𝑙𝑜𝑔 [∫ 𝑓𝜈(𝑥)𝑑𝑥

∞

0

] = (1 − 𝜈)−1 × 

× log [∑ ∑ (−1)𝑙+𝑘+𝑖+𝑞+𝑝(4𝑏𝛿)𝜈
∞

𝑙,𝑘,𝑖,𝑗,𝑞=0

(
−2𝜈
𝑙
) (
𝑙
𝑘
) (
−(2𝜈 + 𝑘)

𝑗
) (
𝑗
𝑖
) (
2𝑞 + 𝑣
𝑝

)

∞

𝑝=0

 

(
𝑏(𝑘 + 𝑖 + 𝑣) − 𝜈

𝑞
) (1 − 𝛿)𝑙 (

𝑝

𝑣
+ 1)∫ (2𝛼𝜃2𝑥𝑒−(𝜃𝑥)

2
(1 − 𝑒−(𝜃𝑥)

2
)
𝛼−1

((1 −
∞

0

𝑒−(𝜃𝑥)
2
)
𝛼
)

𝑝

𝑣
)

𝑣

𝑑𝑥]  (20) 

3. Methods for Estimating Parameters 

In this section, the unknown parameters of the MO-TLHL-BX distribution are 

estimated using different methods of estimation. 

3.1 Maximum Likelihood Estimation 

The ML method, also called full information maximum likelihood, is most 

widely used because it generates estimates with highly desirable large sample 

properties. These properties also approximately hold in finite samples. For 

linear models with normally distributed errors, the ML estimator (MLE) is 

unbiased, normally distributed, and most efficient. 

Clearly, given a Φ, 𝐿(Φ) represents the probability for the sample to be 

observed. Because the sample is already observed, the idea of ML is to find a 

value of Φ that maximizes this probability. Formally, the MLE is defined by 

the value Φ̃ that maximizes 𝐿(Φ). 
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In our case, 𝑥1, 𝑥2, … , 𝑥𝑛 be i.i.d. random variables with a a probability density 

function (5). The likelihood function of parameters 𝑏, 𝛿, 𝛼, 𝜃 is:  

 ℓ = 𝑛𝑙𝑛(4𝑏) + 𝑛𝑙𝑛(𝛿) + ∑ 𝑙𝑛 (2𝛼𝜃2𝑥𝑒−(𝜃𝑥)
2
(1 − 𝑒−(𝜃𝑥)

2
)
𝛼−1

)𝑛
𝑖=1 +

∑ 𝑙𝑛 (1 − (1 − 𝑒−(𝜃𝑥)
2
)
𝛼
)𝑛

𝑖=1 + (𝑏 − 1) × ∑ 𝑙𝑛 (1 − 1 − (1 − 𝑒−(𝜃𝑥)
2
)
𝛼
 )𝑛

𝑖=1 −

2∑ 𝑙𝑛 (1 + (1 − (1 − (1 − (1 − 𝑒−(𝜃𝑥)
2
)
𝛼
)))

𝑏

)𝑛
𝑖=1 −−2∑ 𝑙𝑛

(

 
 
 
1 − (1 −𝑛

𝑖=1

𝛿)

(

  
 (1−(1−(1−𝑒−(𝜃𝑥𝑖)

2
)
𝛼

)

2

)

𝑏

1+(1−(1−(1−(1−𝑒−(𝜃𝑥𝑖)
2
)
𝛼

)))

𝑏

)

  
 

)

 
 
 

 (21) 

The exact solution for unknown parameters is not possible analytically, so 

estimates are obtained by solving nonlinear equations simultaneously. The 

solution of nonlinear systems is easier with iterative techniques such as the 

Newton-Raphson approach. By providing an initial guess of the parameters, 

Newton Raphson used these initial values to calculate parameter estimates. 

Asymptotically, these estimates of parameters approach normality, and the z-

score is approximately standard normal, which can be used to find the 

100(1 − 𝛼) two-sided confidence interval for the parameters. 

 

3.2 Least Square Estimation 

The least square estimators and weighted least square estimators (LSEs) were 

proposed by Swain, Venkatraman and Wilson (Swain (1988)) to estimate the 

parameters of a Beta distribution. 

The LSEs of the unknown parameters of MO-TLHL-BX distribution can be 

obtained by minimizing:  

∑ (𝐹(𝑥(𝑗); 𝑏, 𝛿, 𝛼, 𝜃) −
𝑗

𝑛+1
)
2

𝑛
𝑗=1   (22) 

with respect to the unknown parameters 𝑏, 𝛿, 𝛼, 𝜃. Where 𝐹(∙) denotes the 

distribution function of the MO-TLHL-BX distribution and 𝐸 (𝐹(𝑋(𝑗))) =
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𝑗

𝑛+1
 is the expectation of the empirical cumulative distribution function. The 

least squares estimate (LSEs) of 𝑏, 𝛿, 𝛼, 𝜃, say, 𝑏̂𝐿𝑆𝐸 , 𝛿𝐿𝑆𝐸 , 𝛼̂𝐿𝑆𝐸 , 𝜃𝐿𝑆𝐸 

respectively, can be obtained by minimizing: 

𝐿𝑆(𝑥𝑗; 𝑏, 𝛿, 𝛼, 𝜃 ) = ∑

(

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 

1−(1−(1−𝑒
−(𝜃𝑥𝑗)

2

)

𝛼

)

2

]
 
 
 
 
𝑏

(

 
 
 
1+

(

 
 
1−

[
 
 
 
 

1−(1−(1−𝑒
−(𝜃𝑥𝑗)

2

)

𝛼

)

2

]
 
 
 
 
𝑏

)

 
 

)

 
 
 

1−(1−𝛿)

(

 
 
 
 
 
 

1−

[
 
 
 
 
 
 
 
 

[
 
 
 
 

1−(1−(1−𝑒
−(𝜃𝑥𝑗)

2

)

𝛼

)

2

]
 
 
 
 
𝑏

1+

(

 
 
1−

[
 
 
 
 

1−(1−(1−𝑒
−(𝜃𝑥𝑗)

2

)

𝛼

)

2

]
 
 
 
 
𝑏

)

 
 

]
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 

 −
𝑗

𝑛+1

)

 
 
 
 
 
 
 
 
 
 

2

𝑛
𝑗=1    

Therefore, 𝑏̂𝐿𝑆𝐸 , 𝛿𝐿𝑆𝐸 , 𝛼̂𝐿𝑆𝐸 , 𝜃𝐿𝑆𝐸 of 𝑏, 𝛿, 𝛼, 𝜃 can be obtained as the solution of 

the following system of equations: 

𝜕𝐿𝑆(𝑥𝑗;𝑏,𝛿,𝛼,𝜃)

𝜕𝑏
= 0, 

𝜕𝐿𝑆(𝑥𝑗;𝑏,𝛿,𝛼,𝜃)

𝜕𝛿
= 0, 

𝜕𝐿𝑆(𝑥𝑗;𝑏,𝛿,𝛼,𝜃)

𝜕𝛼
= 0, 

𝜕𝐿𝑆(𝑥𝑗;𝑏,𝛿,𝛼,𝜃)

𝜕𝜃
= 0 

We can solve these equations numerically to obtain the estimates 

𝑏̂𝐿𝑆𝐸 , 𝛿𝐿𝑆𝐸 , 𝛼̂𝐿𝑆𝐸 , 𝜃𝐿𝑆𝐸  . 

3.3 The Weighted Least Square Estimation 

The weighted least squares estimators (WLSEs) of the unknown parameters 

can be obtained by minimizing: 

∑ 𝜔𝑗 (𝐹(𝑥(𝑗)) −
𝑗

𝑛+1
)
2
          𝑛

𝑗=1   (23) 

with respect to 𝛼, 𝛽, 𝜃 , where 𝜔𝑗 denotes the weight function at the 𝑗𝑡ℎ point, 

which is equal to  

𝜔𝑗 =
1

𝑉(𝐹(𝑋(𝑗))

(𝑛+1)2(𝑛+2)

𝑗(𝑛−𝑗+1)
  

The weighted least square estimates (WLSEs) say 𝑏̂𝑊𝐿𝑆𝐸 , 𝛿𝑊𝐿𝑆𝐸 , 𝛼̂𝑊𝐿𝑆𝐸 and 

 𝜃𝑊𝐿𝑆𝐸 can be obtained by minimizing: 

𝑊𝐿𝑆(𝑥𝑗; 𝑏, 𝛿, 𝛼, 𝜃 ) = 
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= ∑
(𝑛+1)2(𝑛+2)

𝑗(𝑛−𝑗+1)

(

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 

1−(1−(1−𝑒
−(𝜃𝑥𝑗)

2

)

𝛼

)

2

]
 
 
 
 
𝑏

(

 
 
 
1+

(

 
 
1−

[
 
 
 
 

1−(1−(1−𝑒
−(𝜃𝑥𝑗)

2

)

𝛼

)

2

]
 
 
 
 
𝑏

)

 
 

)

 
 
 

1−(1−𝛿)

(

 
 
 
 
 
 

1−

[
 
 
 
 
 
 
 
 

[
 
 
 
 

1−(1−(1−𝑒
−(𝜃𝑥𝑗)

2

)

𝛼

)

2

]
 
 
 
 
𝑏

1+

(

 
 
1−

[
 
 
 
 

1−(1−(1−𝑒
−(𝜃𝑥𝑗)

2

)

𝛼

)

2

]
 
 
 
 
𝑏

)

 
 

]
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 

 −
𝑗

𝑛+1

)

 
 
 
 
 
 
 
 
 
 

2

𝑛
𝑗=1   

Therefore, the estimators 𝑏̂𝑊𝐿𝑆𝐸 , 𝛿𝑊𝐿𝑆𝐸 , 𝛼̂𝑊𝐿𝑆𝐸 , 𝜃𝑊𝐿𝑆𝐸 can be obtained from 

the first partial derivative with respects to 𝛼, 𝛽, 𝜃 and set the result equal to 

zero: 

𝜕𝑊𝐿𝑆(𝑥𝑗;𝑏,𝛿,𝛼,𝜃 )

𝜕𝛼
= 0, 

𝜕𝑊𝐿𝑆(𝑥𝑗;𝑏,𝛿,𝛼,𝜃 )

𝜕𝛽
= 0, 

𝜕𝑊𝐿𝑆(𝑥𝑗;𝑏,𝛿,𝛼,𝜃 )

𝜕𝛼
= 0, 

𝜕𝑊𝐿𝑆(𝑥𝑗;𝑏,𝛿,𝛼,𝜃 )

𝜕𝜃
= 0 

By solving these equations numerically, we can obtain the estimates 

𝑏̂𝑊𝐿𝑆𝐸 , 𝛿𝑊𝐿𝑆𝐸 , 𝛼̂𝑊𝐿𝑆𝐸 and  𝜃𝑊𝐿𝑆𝐸. 

3.4 L-Moments Estimators 

The L-moments estimators were originally proposed by Hosking (1990). 

These estimators are obtained by equating the sample L-moments with the 

population L-moments. Hosking (1990) states that the L-moment estimators 

are more robust than the moment estimators and they are also relatively robust 

to the effects of outliers and reasonably efficient when compared to the 

maximum likelihood estimators for some distributions.  

For the MO-TLHL-BX distribution, the L-moments estimators can be 

obtained by equating the first three sample L-moments with the corresponding 

population L-moments. The first three sample L-moments are: 

𝑙1 =
1

𝑛
∑𝑥(𝑗),

𝑛

𝑗=1

 

𝑙2 =
2

𝑛(𝑛 − 1)
∑(𝑗 − 1)𝑥(𝑗)

𝑛

𝑗=2

− 𝑙1 
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𝑙3 =
6

𝑛(𝑛 − 1)(𝑛 − 2)
∑(𝑗 − 1)(𝑗 − 2)𝑥(𝑗) − 6𝑙2 + 𝑙1

𝑛

𝑗=3

 

and the first three population L-moments are: 

𝜆1 = 𝐸(𝑋1:1) = ∫ 𝑥
+∞

−∞

𝑓(𝑥)𝑑𝑥 = 𝐸(𝑋), 

𝜆2 =
1

2
[𝐸(𝑋2:2) − 𝐸(𝑋2:1)] = ∫ 𝑥[2𝐹(𝑥)

+∞

−∞

− 1]𝑓(𝑥)𝑑𝑥, 

𝜆2 =
1

3
[𝐸(𝑋3:3) − 2𝐸(𝑋2:3) + 𝐸(𝑋1:3)] = ∫ 𝑥[6(𝐹(𝑥))

2
− 6𝐹(𝑥)

+∞

−∞

+ 1]𝑓(𝑥)𝑑𝑥 

Here, 𝑋𝑗:𝑛 denotes the 𝑗𝑡ℎ order statistic of a sample of size 𝑛. Therefore, the 

L-moments estimators 𝑏̂𝐿𝑀𝐸 , 𝛿𝐿𝑀𝐸 , 𝛼̂𝐿𝑀𝐸 , 𝜃𝐿𝑀𝐸  of the parameters 𝑏, 𝛿, 𝛼, 𝜃 can 

be obtained by solving numerically the following equations: 

     𝜆1(𝛼̂𝐿𝑀𝐸 , 𝛽̂𝐿𝑀𝐸 , 𝜃𝐿𝑀𝐸  ) = 𝑙1, 𝜆2(𝛼̂𝐿𝑀𝐸 , 𝛽̂𝐿𝑀𝐸 , 𝜃𝐿𝑀𝐸  ) = 𝑙2, 

𝜆3(𝛼̂𝐿𝑀𝐸 , 𝛽̂𝐿𝑀𝐸 , 𝜃𝐿𝑀𝐸  ) = 𝑙3 

3.5 Maximum Product Spacing Estimators  

The Maximum Product of Spacings (MPS) approach, which is used to estimate 

parameters in continuous univariate distributions, was first suggested by 

Cheng and Amin in 1983. Independently, Ranneby also developed this method 

in 1984 as an approximation of the Kullback-Leibler measure of information.   

This technique relies on the concept that the variations between successive 

sites should have the same distribution.  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from the MO-TLHL-BX distribution 

and 𝑋(1), 𝑋(2), … , 𝑋(𝑛) be an ordered random sample. For convenience, we also 

denote 𝑋0 = −∞ and 𝑋𝑛 = +∞. In the method of maximum product of 

spacings, we seek to estimate the parameters 𝑏, 𝛿, 𝛼, 𝜃 of the distribution by 

maximizing the geometric mean of distances 𝐷𝑖, where every distance 𝐷𝑖  is 

defined as  

𝐷𝑖 = ∫ 𝑓(𝑥; 𝜃)
𝑥(𝑖)
𝑥(𝑖−1)

𝑑𝑥 = 𝐹(𝑥(𝑖); 𝑏, 𝛿, 𝛼, 𝜃 ) − 𝐹(𝑥(𝑖−1); 𝑏, 𝛿, 𝛼, 𝜃 )  for 𝑖 =

1, 2, … , 𝑛 + 1  (20) 

where 𝐹(𝑥(0); 𝑏, 𝛿, 𝛼, 𝜃) = 0, 𝐹(𝑥(𝑛+1); 𝑏, 𝛿, 𝛼, 𝜃 ) = 1 and ∑ 𝐷𝑖 = 1.
𝑛+1
𝑖=1  

The geometric mean of distances is given by: 
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𝐺𝑀 = √∏ 𝐷𝑖
𝑛+1
𝑖=1

𝑛+1
  (24) 

The MPS estimators 𝑏̂𝑀𝑃𝑆, 𝛿𝑀𝑃𝑆, 𝛼̂𝑀𝑃𝑆, 𝜃𝑀𝑃𝑆 are obtained by maximizing the 

geometric mean (GM) of the spacings with respect to 𝑏, 𝛿, 𝛼, 𝜃 or equivalently 

by maximizing the logarithm of the geometric mean of the sample spacings: 

log(𝐺𝑀) = log

(

 √∏𝐷𝑖

𝑛+1

𝑖=1

𝑛+1

 

)

 =
1

𝑛 + 1
∑ 𝑙𝑜𝑔𝐷𝑖

𝑛+1

𝑖=1

=
1

𝑛 + 1
∑ log[𝐹(𝑥(𝑖);𝑏, 𝛿, 𝛼, 𝜃 ) − 𝐹(𝑥(𝑖−1);𝑏, 𝛿, 𝛼, 𝜃 )]

𝑛+1

𝑖=1

 

=
1

𝑛 + 1
∑ log 

[
 
 
 
 
 
 
 
 
 [1 − (1 − (1 − 𝑒−(𝜃𝑥𝑖)

2
)
𝛼
)
2
]
𝑏

(1 + (1 − [1 − (1 − (1 − 𝑒−(𝜃𝑥𝑖)
2
)
𝛼
)
2
]
𝑏

))

1 − (1 − 𝛿)

(

 
 
1 −

[
 
 
 
 [1 − (1 − (1 − 𝑒−(𝜃𝑥𝑖)

2
)
𝛼
)
2
]
𝑏

1 + (1 − [1 − (1 − (1 − 𝑒−(𝜃𝑥𝑖)
2
)
𝛼
)
2
]
𝑏

)
]
 
 
 
 

)

 
 

𝑛+1

𝑖=1

 

−

[1 − (1 − (1 − 𝑒−(𝜃𝑥(𝑖−1))
2

)
𝛼

)
2

]

𝑏

(1 + (1 − [1 − (1 − (1 − 𝑒−(𝜃𝑥(𝑖−1))
2

)
𝛼

)
2

]

𝑏

))

1 − (1 − 𝛿)

(

  
 
1 −

[
 
 
 
 
 

[1 − (1 − (1 − 𝑒−(𝜃𝑥(𝑖−1))
2

)
𝛼

)
2

]

𝑏

1 + (1 − [1 − (1 − (1 − 𝑒−(𝜃𝑥(𝑖−1))
2

)
𝛼

)
2

]

𝑏

)
]
 
 
 
 
 

)

  
 

]
 
 
 
 
 
 
 
 
 
 
 

 

3.6 Methods of Minimum Distances 

The minimum distance method is a versatile approach that formalizes the 

inference issue by seeking a distribution function that closely approximates 

the empirical distribution derived from the observed data. The technique of 
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minimal distance estimate was first introduced by Wolfmitz in 1950. The 

approach involves estimating the parameters of a distribution by minimizing 

the statistics of the empirical distribution function, commonly known as 

goodness-of-fit statistics. The minimal distance approach offers many 

estimators based on the selected empirical distribution function statistic. 

Within this part, we provide three estimate techniques for the MO-TLHL-BX 

distribution. These approaches include minimizing the goodness-of-fit 

statistics in relation to the parameters, 𝑏, 𝛿, 𝛼 and 𝜃. This statistical approach 

relies on comparing the estimate of the cumulative distribution function with 

the empirical distribution function (see to D'Agostino, R. (1986) and Luceno, 

Alberto (2006)). 

3.6.1 Method of Cramér-von-Mises  

The Cramér-von-Mises estimator (CME) is a type of minimum distance 

estimator, which is based on the Cramér-von-Mises statistic (Cramér, H. 

(1928), Cramér von Mises, R. E. (1928)). MacDonald (1971) motivates the 

choice of Cramér-von-Mises type minimum distance estimators providing 

empirical evidence that the bias of the estimator is smaller than the other 

minimum distance estimators. The Cramér-von-Mises estimates 

𝑏̂𝐶𝑀𝐸 , 𝛿𝐶𝑀𝐸 , 𝛼̂𝐶𝑀𝐸 , 𝜃𝐶𝑀𝐸  of parameters 𝑏, 𝛿, 𝛼, 𝜃 of MO-TLHL-BX 

distribution are obtained by minimizing, with respect to 𝑏, 𝛿, 𝛼 and 𝜃 the 

function: 

𝐶(𝛼, 𝛽, 𝜃 ) =
1

12𝑛
+∑(𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃 ) −

2𝑖 − 1

𝑛
)
2𝑛

𝑖=1

 

𝐶(𝑏, 𝛿, 𝛼, 𝜃 ) =
1

12𝑛
+ ∑

(

 
 
 
 1 −𝑒𝑥𝑝

(

 
 
1 − 

(

 (
(𝜃 + 1)𝑥𝑖 𝑒

𝜃
𝑥𝑖

𝜃 + 𝜃 𝑥𝑖 + 𝑥𝑖
− 1)

−𝛼

+ 1

)

 

𝛽

)

 
 

1+𝑒𝑥𝑝

(

 
 
1 − 

(

 (
(𝜃 + 1)𝑥𝑖 𝑒

𝜃
𝑥𝑖

𝜃 + 𝜃 𝑥𝑖 + 𝑥𝑖
− 1)

−𝛼

+ 1

)

 

𝛽

)

 
 

−
2𝑖−1

𝑛

)

 
 
 
 

2

𝑛
𝑖=1  (25) 

These estimates can be obtained by solving the nonlinear equations: 

∑(𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃) −
2𝑖 − 1

𝑛
)
2 𝜕𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝜕𝑏
= 0 

𝑛

𝑖=1
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∑(𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃 ) −
2𝑖 − 1

𝑛
)
2 𝜕𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃 )

𝜕𝛿
= 0 

𝑛

𝑖=1

 

∑(𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃 ) −
2𝑖 − 1

𝑛
)
2 𝜕𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃 )

𝜕𝛼
= 0  

𝑛

𝑖=1

 

∑(𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃 ) −
2𝑖 − 1

𝑛
)
2 𝜕𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃 )

𝜕𝜃
= 0  

𝑛

𝑖=1

 

3.6.2 Methods of Anderson-Darling and Right-tail Anderson-Darling 

Another type of minimum distance estimators is based on Anderson-Darling 

statistic and is known as the Anderson-Darling estimator (ADE). The 

Anderson-Darling test is like Cramér-von-Mises criterion except that the 

integral is of a weighted version of the squared difference, where the weighting 

relates the variance of the empirical distribution function. The Anderson-

Darling test was developed T.W. Anderson and D.A. Darling (T. W. Anderson, 

D. A. Darling, (1952). Anderson, T., & Darling, D. (1954).) as an alternative 

to other statistical tests for detecting sample distributions departure from 

normality. The Anderson-Darling estimates of the parameters are obtained by 

minimizing, with respect to 𝑏, 𝛿, 𝛼, 𝜃, the function: 

𝐴(𝑏, 𝛿, 𝛼, 𝜃) = −𝑛 −
1

𝑛
∑ (2𝑖 − 1)[𝑙𝑜𝑔𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃) +
𝑛
𝑖=1

log 𝐹̅ (𝑥(𝑛+1−𝑖)|𝑏,𝛿, 𝛼, 𝜃)]  (26) 

∑(2𝑖 − 1) [
𝐹𝑏
, (𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
−
𝐹̅𝑏
, (𝑥(𝑛+1−𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
]

𝑛

𝑖=1

= 0 

∑(2𝑖 − 1) [
𝐹𝛿
, (𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
−
𝐹̅𝛿
, (𝑥(𝑛+1−𝑖)|𝑏,𝛿, 𝛼, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
]

𝑛

𝑖=1

= 0 

∑(2𝑖 − 1) [
𝐹𝛼
,(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
−
𝐹̅𝛼
,(𝑥(𝑛+1−𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
]

𝑛

𝑖=1

= 0 

∑(2𝑖 − 1) [
𝐹𝜃
, (𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
−
𝐹̅𝜃
, (𝑥(𝑛+1−𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝑏,𝛿, 𝛼, 𝜃)
]

𝑛

𝑖=1

= 0 

The Right-tail Anderson-Darling estimates of the parameters are obtained by 

minimizing, with respect to 𝑏, 𝛿, 𝛼, 𝜃, the function: 
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𝑅(𝑏, 𝛿, 𝛼, 𝜃) =
𝑛

2
− 2∑ 𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃) −

1

𝑛
∑ (2𝑖 −𝑛
𝑖=1

𝑛
𝑖=1

1) log 𝐹̅ (𝑥(𝑛+1−𝑖)|𝑏, 𝛿, 𝛼, 𝜃)  (27) 

These estimates can also be obtained by solving the non-linear equations: 

−2∑
𝐹𝑏
, (𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
+
1

𝑛
∑(2𝑖 − 1)

𝐹̅𝑏
, (𝑥(𝑛+1−𝑖)|𝑏,𝛿, 𝛼, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝑏,𝛿, 𝛼, 𝜃)
= 0

𝑛

𝑖=1

𝑛

𝑖=1

 

−2∑
𝐹𝛿
, (𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
+
1

𝑛
∑(2𝑖 − 1)

𝐹̅𝛿
, (𝑥(𝑛+1−𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
= 0

𝑛

𝑖=1

𝑛

𝑖=1

 

−2∑
𝐹𝛼
,(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
+
1

𝑛
∑(2𝑖 − 1)

𝐹̅𝛼
,(𝑥(𝑛+1−𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
= 0

𝑛

𝑖=1

𝑛

𝑖=1

 

−2∑
𝐹𝜃
, (𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹(𝑥(𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
+
1

𝑛
∑(2𝑖 − 1)

𝐹̅𝜃
, (𝑥(𝑛+1−𝑖)|𝑏, 𝛿, 𝛼, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝑏, 𝛿, 𝛼, 𝜃)
= 0

𝑛

𝑖=1

𝑛

𝑖=1

 

4. Application 

4.1 Simulation Study  

Within this part, we conduct Monte Carlo simulation research to assess the 

effectiveness of several estimate approaches in determining the parameters of 

the MO-TLHL-BX distribution. We evaluate the suggested estimators by 

using the Kolmogorov-Smirnov test. 

This technique relies on the KS statistic:𝐷𝑛 = max
𝑥
|𝐹𝑛(𝑥) − 𝐹(𝑥|𝑏, 𝛿, 𝛼, 𝜃)| 

where max
𝑥
 denotes the maximum of the set of distances, 𝐹𝑛(𝑥) is the empirical 

distribution function, and 𝐹(𝑥|𝑏, 𝛿, 𝛼, 𝜃) is the cumulative distribution 

function. 

Firstly, we provided an algorithm to generate a random sample from the MO-

TLHL-BX distribution for given values of its parameters and sample size n. 

The following procedure was adopted: 

1. Set n, 𝛩 = (𝑏, 𝛿, 𝛼, 𝜃) and initial value 𝑥0. 
2. Generate 𝑈~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1). 
3. Update 𝑥0 by using the Newton’s formula. 

𝑥∗ = 𝑥0 − 𝑅(𝑥0, 𝛩)  
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where, 𝑅(𝑥0, 𝛩) =
𝐹𝑋(𝑥

0,𝛩)−𝑈

𝑓𝑋(𝑥
0,𝛩)

, 𝐹𝑋(∙) and 𝑓𝑋(∙) are cdf and pdf of the MO-TLHL-BX 

distribution, respectively.  

 

4. If |𝑥0 − 𝑥∗| ≤ 𝜖 (very small, 𝜖 > 0 tolerance limit ), then store 𝑥 = 𝑥∗ as a 

sample from MO-TLHL-BX distribution. 

5. If |𝑥0 − 𝑥∗| > 𝜖, then set 𝑥0 = 𝑥∗ and go to step 3.  

6. Repeat steps 3-5, n times for 𝑥1, 𝑥2, … , 𝑥𝑛 respectively.  

For this purpose, we take 𝑏 = 0.5, 𝛿 = 0.5, 𝛼 = 0.5, 𝜃 = 1.9 arbitrarily and 

𝑛 =  10, 20, . . . , 100. All the algorithms are coded in R, a statistical 

computing environment and we used algorithm given above for simulations 

purpose. 

From the results of the simulation study, it is observed that the method of 

Maximum Likelihood Estimation (MLE) is the most efficient method 

compared to others for estimating the parameters of the MO-TLHL-BX 

distribution since it has the minimum value of Kolmogorov-Smirnov test 

(Table 1). 

Table 1. The methods of estimation and their respective Kolmogorov-

Smirnov test value. 

i Methods of Estimations K-S test Ranking 

1 Maximum Product Spacing Estimating 0.0375580 4 

2 Least Square Estimation 0.0366624 3 

3 Weighted Least Square Estimation 0.0342950 2 

4 L-Moment Estimation 0.0386830 5 

5 Maximum Likelihood Estimation  0.0333950 1 

6 Maximum Product Spacing Estimating 0.0403951 6 

7 Anderson-Darling Estimation 0.0408900 7 

8 Right-tail Anderson-Darling 0.0413950 8 

 

4.2 Real Data Set 

We will assess the effectiveness of the expanded distribution in this section. 

This research employs an authentic data set to illustrate our model's superior 

performance when compared to alternative models that were implemented on 

the identical data set. The information provided concerns the daily influx of 

new COVID-19 cases in Albania between July 1st and August 1st, 2022, with 

respect to the advent of a novel strain of the virus. 
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The data is collected from the official site of the [Albania COVID-Coronavirus 

Statistics-Worldometer (worldometers.info)].  

The data are as follows: 619; 671; 549; 147; 974; 945; 973; 1,001; 962; 290; 

561; 1,215; 1,563; 1,502; 1,461; 1,326; 1,062; 427; 1,846; 1,480; 1,336; 1,373; 

1,158; 965; 233; 1,666; 1,261; 1,228; 1,084; 1,019; 716. 

Table 2. MLEs and comparison criteria for the COVID-19 case fatality ratio 

in Albania. 
Distribution Parameter 

Estimate 
−ℓ AIC BIC CAIC 

MO-TLHL-BX 

(𝑏, 𝛿, 𝛼, 𝜃) 
0.585, 0.025, 

0.126 

0.018 

89.91528 142.1146 139.631 147.164 

Beta Burr Type X 

(𝛼, 𝜆, 𝜇, 𝛿) 

0.141, 4.384, 

1.081 

0.112 

131.04398 175.1326 170.365 184.574 

Generalized Burr 

type X 

(𝛼, 𝜆, 𝜌) 

0.028, 0.115, 

0241 

194.14108 267.2326 268.951 278.247 

Exponentiated Burr 

type X 

(𝜃, 𝛽) 

0.041, 0.365 200.11628 317.4656 321.614 329.543 

 

To assess the distribution models, several metrics such as AIC (Akaike 

information criterion), CAIC (corrected Akaike information criterion), and 

BIC are considered for the given dataset. A more optimal distribution is 

characterized by lower values of the criterion. 
𝐴𝐼𝐶 = −2𝑙𝑜𝑔ℓ(𝑥̃, 𝛼, 𝛽, 𝜃) + 2𝑝 

𝐶𝐴𝐼𝐶 = 𝐴𝐼𝐶 +
2𝑝(𝑝 + 1)

𝑛 − 𝑝 − 1
 

𝐵𝐼𝐶 = −2𝑙𝑜𝑔ℓ(𝑥̃, 𝛼, 𝛽, 𝜃) + 𝑝𝑙𝑜𝑔(𝑛) 

The 𝑝-value indicates the number of parameters that will be estimated from 

the data, whereas n represents the sample size. 

According to the findings shown in Table 2, our analysis demonstrates that the 

Marshall-Olkin Topp-Leone Half-Logistic-Burr type X distribution has 

superior goodness of fit compared to other models, namely the Burr-Type X, 

Beta Burr Type X, Generalized Burr type X, Exponentiated Burr type X. 
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Conclusion 

Utilizing the Marshall-Olkin Topp-Leone Half-Logistic-G family 

distributions, this research paper introduces the Marshall-Olkin Topp-Leone 

Half-Logistic-Burr type X, an innovative distribution. An examination of 

numerous statistical characteristics of the distribution was conducted, and an 

endeavour was made to construct a model that could estimate its parameters. 

A comparative effectiveness analysis of multiple estimators was performed 

through simulation research employing the Kolmogorov-Smirnov test. The 

current investigation examines a genuine set of COVID-19 data to showcase 

the versatility of the proposed model in contrast to the degree of precision 

attained by alternative distributions. It is hypothesized that the application of 

this broadened distribution holds promises for investigation in additional 

fields of study. 
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