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Abstract 

Neurodegenerative diseases affect an ever-increasing number of the human 

population, especially the elderly, the immune-compromised or both. Studies 

show that more than 55 million people have Alzheimer’s disease and more 

than 10 million are afflicted with Parkinson’s disease worldwide. Even though 

complex by nature, these diseases all share one key feature, their lack or 

miscommunication between neurons and other cells. They are also aided by a 

number of other factors, ranging from age, diet, lack of exercise up to aberrant 

cell signal, abnormal protein production or degradation and formation of 

aggregates. The loss of neurons in both the central and peripheral nervous 

system, making them unable to regenerate leads to loss of motor function, 

impaired speech, compromised memory, inflammation, aberrant proteostasis 

and neuron death. Aberrant signaling of several signaling pathways have been 

shown to play a crucial role in the development and progression of 

neurodegenerative diseases. Apart from abnormal signals, the immune system 

has been found to be a factor involved in the progression of neural 

degeneration and death. These findings in correlation with the fact that 

clinical approaches do not always reflect base research, make it a priority to 

further understand the underlying mechanisms affecting these diseases in 

order to treat them. Our study focuses on summarizing recent advances in 

neural pathology research to accurately diagnose them and finding novel 

treatments based on the mechanism of action. 
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Sëmundjet neurodegjenerative prekin një numër përherë dhe në rritje të 

popullatës njerëzore, sidomos të moshuarit, të imunokompromentuarit ose të 

dy. Studimet tregojnë se më shumë se 55 milion njerëz janë të prekur nga 

sëmundja e Alzheimer-it dhe mbi 10 milion vuajnë nga sëmundja e Parkinson-

it në mbarë botën. Edhe pse komplekse nga natyra, këto sëmundje kanë të 

gjitha një veçori të përbashkët, mungesa ose komunikimi jo i saktë midis 

neuroneve dhe qelizave të tjera. Ato ndihmohen dhe nga faktorë të tjerë duke 

filluar prej moshës, dieta, mungesa e stërvitjes deri në sinjalizim qelizor të 

gabuar, prodhim dhe degradim jo normal të proteinave e të agregatëve. 

Humbja e neuroneve në sistemin nervor qendror dhe atë periferik, duke e bërë 

të paaftë për rigjenerimin e tyre çon në humbjen e funksioneve motore, të folur 

me probleme, kujtesë të kompromentuar, inflamacion, proteostazë të gabuar 

dhe vdekjen e neuroneve. Sinjalizimi i gabuar i disa rrugëvë sinjalizuese ka 

shfaqur një rol kyç në zhvillimin dhe përhapjen e sëmundjeve 

neurodegjenerative. Përveç sinjaleve jo normale, sistemi imunitar është gjetur 

si faktor në përhapjen e degjenerimit neural dhe vdekjen e tyre. Këto zbulime 

në korrelim me faktin që përqasjet klinike nuk reflektojnë përherë kërkimin 

bazë, e bëjnë një përparësi për të kuptuar dhe më tej mekanzimat veprues që 

prekin këto sëmundje në mënyrë për t’i trajtuar ato. Studimi ynë fokusohet në 

përmbledhjen e kërkimeve të reja në zbulimet e patologjive neurale për t’i 

diagnostikuar ato në mënyrë të saktë dhe gjetjen e trajtimeve noveliste bazuar 

në mekanizmin e veprimit. 

Fjalë kyçe: Neurodegjenerative, Sëmundje, Agregatë, Sinjalizim, Toksicitet 

Introduction 

Neurodegenerative diseases are firstly connected with older ages and this is 

due to the impairment of the internal cell mechanisms to maintain 

homeostasis. Under non-physiological conditions, cells tend to explore new 

mechanisms of living thus altering themselves more often than not, including 

the surrounding neighboring cells. Diseases affecting the nervous system are 

very complex with one common key feature; the lack of communication 

between neurons or neurons and other type of cells. They can differentiate 

according to the neuronal regions that shows malfunctioning characteristics. 

Over the years, studies have shown an increased involvement of the peripheral 

nervous system as well as the immune system in the development of 

neurodegenerative diseases. However, there are still many unanswered 

questions about the underlying mechanisms that trigger the onset of the 

disease or promote its development.  
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There is a lack of knowledge about the type of cell/s responsible for initiating 

or sustaining the degeneration of the nervous system and even fewer 

information about the possible repair mechanisms that might take place to 

either inhibit or stop the development of this type of disease. Under these 

circumstances, researchers and neuroscientists in particular, have created a list 

of common factors that influence the development of neurodegenerative 

diseases. Amongst them listed include aging, dietary customs and nutritional 

customs, physical activity and environmental toxins (Wareham et al., 2022).  

One of the inevitable phases of life is aging process which has been associated 

with many different diseases with the passage of the years with special 

attention in neurodegenerative diseases (Hou et al., 2019). Studies have shown 

that the Alzheimer disease for example, has been diagnosed in more than 5 

million people only in the United States of America in 2018 ("2021 

Alzheimer's disease facts and figures," 2021). In 2017, up to 3% of the 

population worldwide over the age of 65 years old have developed Parkinson’s 

disease (Wareham et al., 2022). These numbers will increase in the coming 

years as longevity of humans rises. The molecular mechanisms of aging are 

associated with multiple key processes within the cell. The most prominent 

mechanisms are DNA-related as several physical alterations of the DNA 

(strand breaks, deletions, and telomere shortening and epigenetic events) can 

enhance degeneration of nervous cells (Lopez-Otin et al., 2013). Further 

studies on aging demonstrated that the quality of proteostasis plays a focal role 

and is another aspect that can disrupt and lead to different protein 

abnormalities affecting structure, activity and degradation (Lopez-Otin et al., 

2013) (Fang et al., 2017).  

Multiple studies have shown that a correct nutritional diet can help in 

decreasing the risk of developing age-related diseases. Better results were 

obtained on individuals suffering from cognitive impairment and especially in 

their early stages. Indirectly, food supplements did help with depression as one 

of the concomitant diseases (Businaro et al., 2021).  

Regular and continuous physical activity has been suggested as an alternative 

therapy for a healthy brain. Researchers have hypothesized on at least two 

separate mechanisms on how exercising can help treating neurodegenerative 

disorders. Shortly summarizing, physical activity is believed to rapidly 

increase the amount of IL6 able to enter the brain and act as neuroprotectors. 

In addition, lower levels of apoptosis and ROS formation have been associated 

with exercising resulting in healthier mitochondria and less mitophagy 



113                                                                                                                      JNS 33/2023 

 

(Marques-Aleixo et al., 2021).  

- Inflammation within the central nervous system  

Inflammation is a defense mechanism of the organism against internal and/or 

external damaging stressors through the activation of white blood cells, in 

particular monocytes. Inflammation occurring in the central nervous system is 

mainly driven by astrocytes and microglial cells (Wareham et al., 2022). In 

Alzheimer disease it has been shown that apart from neuronal-derived 

damages, immune cells either residing in the CNS or in PNS can play a critical 

role in the progression of the disease (Guzman-Martinez et al., 2019). In 2018, 

Cortes et al demonstrated that neuroinflammation can induce incorrect folding 

of tau protein. The majority of the tau protein structure in neurons is localized 

in the axons and a much lesser amount in the dendrites. In the beginning, the 

role of tau was only associated with the integrity of the microtubules 

(Weingarten et al., 1975) (Drechsel et al., 1992), but in 2010 Citron proved 

another function in the nucleus (Citron, 2010). Under normal physiological 

conditions, tau  is lost leading to the formation of different epitopes (Guzman-

Martinez et al., 2019). Tau hyperactivation creates a favorable environment 

for auto-accumulation inside the cells that lead to toxicity (Braak & Braak, 

1991). This pathology, in the majority of cases with AD is as a result of the 

amyloid plaques (Pontecorvo et al., 2017).  

The latter is able to bind at least 3 different types of receptors like TLR, RAGE 

and NLR that activate microglia. A cytokine and chemokine storm leads to a 

higher recruitment of more microglia and astrocytes at the site (Heneka et al., 

2014). Their purpose is to remove the amyloid β plaques. In case amyloid β 

plaques phagocytosis is not complete, neuroinflammation persists and toxicity 

can happen (Hansen et al., 2018). It is hypothesized that higher levels of 

amyloid β segments induced from the microglia themselves might upregulate 

IFITM3 expression that leads to higher levels of beta amyloid (Hur et al., 

2020). Researchers believe that the link between the amyloid β and tau 

aggregation is precisely because of the activation of glial cells (Nisbet et al., 

2015) (Yoshiyama et al., 2007). Loss of function and apoptosis in neurons 

induced from tau hyperphosphorylation is probably due to the disruption of 

the cell membrane (Guo et al., 2017) (Meng et al., 2022).  

In postmortem brain cells analysis from individual who suffered from PD 

demonstrated, for the first time in 1998, the presence of activated glial cells 

emphasizing the potential role of neuroinflammation in the development of 

PD (McGeer et al., 1988). Other follow up studies confirmed that aggregation 
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of α-synuclein, which until then was considered as the primary cause of 

neuronal loss, was not always leading to neurotoxicity (Milber et al., 2012). 

In fact, it was shown that α-synuclein plaques exhibited a toxic effect in 

neurons only if microglia cells were present (Zhang et al., 2005) (Acuña et al., 

2019). Over time, several contradictory papers were published where 

sometimes α-synuclein aggregation induced mitochondrial abnormalities and 

cell death (Ludtmann et al., 2018) (Di Maio et al., 2016).  

Other in vivo investigations and samples from PD patients reported 

dysfunctional nervous cells releasing damaged α-synuclein in the surrounding 

microenvironment (Gundersen, 2020) (Kim et al., 2013) (Choi et al., 2020). 

Once outside the cell, α-synuclein can in turn stimulate other glial cells by 

acting as a ligand for either different receptors expressed in the cell membrane 

or intracellular ones (Tansey et al., 2022) (Grozdanov et al., 2019) (Chavarría 

et al., 2022). The high phosphorylation level found in aggregated α-synuclein 

was firstly considered as a pathological feature. Latter investigations showed 

that it might in fact be a protective mechanism (Kawahata et al., 2022) 

(Ghanem et al., 2022). Moreover, there is ample evidence that microglia cells 

can cooperate to faster degrade α-synuclein aggregates through the formation 

of intercellular bridges for α-synuclein transportation (Scheiblich et al., 2021). 

After deeper analysis, Banati et al hypothesized that α-synuclein transfer 

between adjacent microglia cell and other glial cells occurred in an attempt to 

recruit a higher number of glial cells (Banati et al., 1993). Theoretically they 

would be able to degrade all of the insoluble plaques, but instead they enabled 

microglia-neuron interaction due to the constant activation of the glial cells 

(Xia et al., 2021). Nowadays, the critical role of the immune system in the 

onset and development of Parkinson disease is documented.  

Signaling pathway potentially leading to neuroinflammation  

-TLR signaling 

Toll-like receptors are key players of the innate immune response and are 

found throughout the organism without a specific localization. In humans 

there are 10 different TLRs, but three of them are strictly connected with 

neurodegenerative diseases, TLR2, TLR4 and TLR9 (Kumar, 2019). They are 

abundantly found in normal neurons and other neural cells and overexpressed 

in patients with NDD (Adhikarla et al., 2021) (Fiebich et al., 2018). Even 

though TLR2 is the most investigated type among TLRs, there are still 

contradictory results. Some studies have demonstrated that TLR2 mediate 

microglia activation from amyloid β aggregates and vice versa where the 
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ablation of TRL2 induced inactivation of microglia and prevention of memory 

loss (Liu et al., 2012) (McDonald et al., 2016) (Rangasamy et al., 2018). On 

the other hand, other research groups have shown the opposite where TLR2 

activity increases amyloid β aggregations and induced-brain damage upon 

TLR2 knockout (Chen et al., 2006) (Zhou et al., 2019). In PD patients, 

expression of TLR2 induced accumulation of α-synuclein, while knocking it 

out gave the opposite effect (Fig.1) (Xia et al., 2021) (Dutta et al., 2021; Guo 

et al., 2020).  

TLR4, shows a similar contradictory activity profile in AD patients. Inhibition 

or deletion of its activity neutralizes the toxic effect of amyloid β (Balducci et 

al., 2017). On the other hand, in vivo experiments showed that mild constant 

TLR4 activation enhanced memory improvement (Qin et al., 2016). 

Conflicting outcomes were obtained from PD mouse models also. Less 

neuroinflammation was achieved in the lack of TLR4 activity (Campolo et al., 

2019) as well as in hyperactivation of the receptors (Venezia et al., 2017).   

TLR9 differs from all other TLRs because is the only one that can identify 

DNA with unmet-CpG region (Yan et al., 1996). Studies have demonstrated 

that TLR9-mediated microglia activation were present in PD samples. AD 

models instead showed that TLR9 signaling pathway enhanced the regression 

of amyloid β aggregates (Patel et al., 2021; Scholtzova et al., 2009). 

Despite the enormous work done so far in understanding the TLR molecular 

mechanism underlying the triggering factors and the development of the 

neurodegenerative disease there are still a lot of gaps. As described earlier, the 

many contradictory outcomes present a very complicated pathological 

condition, making its treatment even more difficult to establish.  
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Figure 1. Illustration of altered signaling pathways in neurodegenerative 

diseases. 

RAGE signaling pathway 

Similarly, to TLR, RAGE signaling can be activated by pathogen- and 

damage- associated molecular patterns, PAMP and DAMP respectively. Both 

patterns promote activation of the immune system (Juranek et al., 2022). The 

direct downstream effect of RAFE receptors is DIAPH1 (diaphanous 1) that 

in turn stimulates the mitogen-activating protein kinases (MAPK) and 

phosphoinositide 3 kinase (PI3K) cascades. The formation of the RAGE-

DIAPH1 complex shows multiple effects within the neural cells:  

accumulation of reactive oxygen species, release of cytokines, increased 

migration and lower levels of cholesterol transporters. Altogether, they 

promote alteration of the normal cell functions (Derk et al., 2018).  

Advanced glycoxidation end (AGE) products are another ligand for RAGE 

receptors. High concentration of AGEs is mainly produced from glycation and 

diets (Scheijen et al., 2016; Vlassara & Uribarri, 2014). A combination of 

elevated AGEs and ROS in cells strongly promotes systemic inflammation 

and maybe degeneration of the nervous system. A very similar profile was 

demonstrated for aging and diabetes, suggesting that this communication can 

be the linking bridge between three critical physiological conditions, diabetes, 

neurodegeneration and aging (Fig.1) (Derk et al., 2018).  

RAGE induced inflammation was demonstrated also in AD because amyloid 

β aggregates can act as a ligand for this type of receptor and ultimately activate 

microglia and other neural cells in the CNS (Yan et al., 1996). In addition, 

many studies proved that amyloid β interaction with RAGE receptors induced 

the translocation of amyloid β itself to the mitochondria and dysfunction of 

the latter (Sbai et al., 2022). PD in vivo models also exhibited a significant 

increase in RAGE expression. In a total knock-out RAGE mouse model the 

survival of neurons was higher (Guerrero et al., 2013; Sathe et al., 2012; 

Teismann et al., 2012).  

The important role of RAGE signaling has been testified, however most of the 

performed research have made use of total knock-out conditions. Therefore, it 

is of great importance to investigate the function of this specific cascade under 

several strength-dependent activation.  

Inflammasomes  

Inflammasomes are complex proteinic structures localized in the cytosol that 
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are activated by a number of structurally different stimuli patterns including 

viruses, bacteria, ARN, ATP, etc, (Lamkanfi & Kanneganti, 2010). Over the 

years, an increasing number of inflammasomes have been discovered, but 

NLRP3 showed the most consistent association with neurodegeneration. Up 

to date, NLRP3 is believed to require two different signals to be fully 

functional. For the first time NLRP3 was discovered in Alzheimer’s disease, 

where NLRP3- dependent IL-1b release was promoted from amyloid β (Halle 

et al., 2008; Parajuli et al., 2013). Total ablation of this inflammasome 

stimulated the phagocytosis of the amyloid β aggregates (Heneka et al., 2013) 

as well as an anti-inflammatory behavior of microglia (Dempsey et al., 2017). 

Based on these results, testing of NLRP3 inhibitors serves as a potential 

therapeutic agent for AD patients (Gordon et al., 2018).  

In Parkinson’s disease the situation is more complicated because the precise 

role of inflammasome NLRP3 is not fully clear. Some studies reported an 

activation of NLRP3 specifically by α-synuclein polymers, while higher 

activity of IL-1b was also detected from monomeric α-synuclein (Codolo et 

al., 2013). Moreover, partial or total inhibition of NLRP3 diminished 

neuroinflammation and degeneration in PD in vivo experiments (Lee et al., 

2019; Zhou et al., 2016). The opposite was demonstrated from Wang et al 

which showed that NLRP3-dependent caspase-1 promoted α-synuclein 

aggregation (Wang et al., 2016). In this case, inflammasome activity 

stimulates longer maintenance of inflammation that probably led to 

neurotoxicity (Fig.1). 

 cGAS (cyclic GMP-AMP synthase) -STING (stimulator of interferon genes) 

signaling pathway 

The human immune system has the ability to identify damaged or exogenous 

DNA material and to consequently trigger an immune response. The cGAS-

STING signaling pathway is responsible for recognizing cytosolic DNA and 

secrete type-1 INF and other cytokines (Decout et al., 2021; Wan et al., 2020). 

This pathway starts with the production of cGAMP upon detection of 

circulating DNA from cGAS. Once cGAMP binds to STING in the 

endoplasmic reticulum, they move to the Golgi apparatus where activation of 

IRF3 and NF-κB signalization occurs promoting the release of interferons and 

cytokines (Zhang et al., 2023). In parallel, activated cGAS-STING cascade is 

able to induce cell death through the destruction of lysosomes and also 

autophagy (Guijarro-Muñoz et al., 2014; Stark et al., 2013). There are many 

unanswered questions about the mechanisms involved or triggered by the 
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cGAS-STING pathway under healthy and pathological conditions. In this 

context, in AD, the cGAS-STING pathway could help in the inactivation of 

microglia (Fang et al., 2017). Some studies reported that the lack of cGAS 

diminished cognitive impairment and aggregation of amyloid β (Xie et al., 

2023), whiles others showed the same result but through the activation of 

STING (Fig. 2) (Xu et al., 2019).  

 

Figure 2. cGAS-STING signaling under normal and abnormal conditions. 

The role of active cGAS-STING was investigated also in the pathology of 

Parkinson’s disease. Researchers elucidated a promotion of 

neuroinflammation and degeneration in a STING-dependent manner (Hinkle 

et al., 2022; Standaert & Childers, 2022). In PD animal models, motoric 

function was restored upon deletion of STING protein (Sliter et al., 2018). A 

more recent publication reported that STING hyperactivation could all by 

itself increase aggregation of α-synuclein and neurodegeneration (Szego et al., 

2022). Even in the case where all studies fully agree with each other, it is still 

important to understand the effects of this pathway in different types of cells 

in order to facilitate the development of efficient therapy strategies.  

Conclusions 

For many years, protein aggregation was considered as the only pathological 

characteristic of neurodegenerative disorders and all therapy approaches 

focused in degrading these aggregations. However, several studies 

demonstrated that fewer aggregates did not correlate with disease regression. 

In the last years, alteration of the immune response in the nervous system has 

gained a lot of attention by acting as a critical player not only in the 
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development of neurodegenerative diseases but also on their onset. There is 

now enough evidence that demonstrates that neuroinflammation occurs even 

prior to protein degradation. This discovery definitely increases the chances 

of developing a much more efficient therapy, even though this approach is not 

that simple. As previously described, there are many contradictory results on 

the role of different inflammatory cascades emphasizing the high complexity 

of this pathology. All data taken into account together suggest the need of a 

specific requirement of the immune response depending on the stage of the 

disease, timing, strength of the stimuli, cell type and the target protein in every 

signaling pathway. In conclusion, there is a great amount of knowledge about 

the role of neuroinflammation in neurodegenerative pathologies gathered over 

the last decades. However, the exact and precise underlying molecular 

mechanisms is still not completely understood and requires further detailed 

investigation.  
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