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Abstract  

This study investigates the effectiveness of Particle Swarm Optimization 

(PSO) in solving groups of convex and non-convex functions for global 

optimization problems. PSO is a popular nature inspired optimization 

algorithm known for its simplicity and efficiency. We evaluate its performance 

in tackling a variety of optimization problems, including both convex and non-

convex objective functions. Global optimization problems, which involve the 

search for optimal solutions over a wide range of possible inputs, are 

ubiquitous in various fields, including engineering, economics, and science. 

Particle Swarm Optimization (PSO), and its technique, has gained attention 

for its simplicity and remarkable performance in various applications. This 

research aims to investigate the effectiveness of PSO in addressing global 

optimization problems that encompass groups of both convex and non-convex 

functions. 
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Përmbledhje 

Ky studim hulumton efikasitetin e algoritmit (PSO) në zgjidhjen e grupeve të 

funksioneve konvekse dhe jo-konvekse për probleme të optimizimit global. 

PSO është një algoritëm i njohur për optimizim, i inspiruar nga natyra dhe i 

njohur për thjeshtësinë dhe efikasitetin e tij. Ne vlerësojmë performancën e tij 

në adresimin e një sërë problemesh optimizimi, duke përfshirë funksione 

objektive të të dy llojeve, konvekse dhe jo-konvekse. Problemet e optimizimit 

global, që përfshijnë kërkimin e zgjidhjeve optimale në një gamë të gjerë të 

mundshme të të dhënave, janë të shpeshta në fusha të ndryshme, përfshirë 

inxhinieri, ekonomi dhe shkencë. Algoritmi PSO dhe teknika e tij, ka tërhequr 
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vëmendjen për thjeshtësinë dhe performancën e tij të jashtëzakonshme në 

aplikime të ndryshme. Ky kërkim synon të hulumtojë efikasitetin e PSO në 

adresimin e problemeve të optimizimit global që përfshijnë grupe të të dy 

llojeve të funksioneve, konvekse dhe jo-konvekse. 

Fjalë kyçe: PSO, funksion, konveks, jo konveks, parametra. 

Introduction 

Finding global optima in optimization problems is indeed a complex and 

challenging task, especially when dealing with non-convex objective 

functions. In this context, optimization algorithms play a critical role in 

providing efficient and effective solutions (Heitzinger, 2022). The objective 

of this study is to evaluate the performance of PSO in solving global 

optimization problems with convex and non-convex functions (Boyd, 2004), 

assessing its ability to efficiently locate global optima in well-behaved 

landscapes. By exploring how PSO performs in global optimization problems 

involving both convex and non-convex functions, this research contributes to 

a deeper understanding of the algorithm’s applicability in real-world scenarios 

(Trehan, Singh 2020), (Yangand, Liu 2019). The findings of this study are 

expected to offer valuable insights into the role of PSO in solving global 

optimization problems and its potential to uncover global optima across a 

spectrum of objective function landscapes. 

Particle Swarm Optimization 

PSO is a stochastic search algorithm inspired by the social-psychological 

behavior of biological entities in nature (developed by Erberhart and Kennedy 

1995), when they are in search of culture resources (bird flocking or fishing). 

Similar to the paradigm of "Swarm Intelligence" (Dorigo, 1999), PSO 

abstracts this reality through correspondences in one table each, thus defining 

a mathematical model that tries to simulate the dynamics of it. searching for 

resources, individually and thanks to the influence of the herd. The dynamic 

adaptation of these entities is reflected mathematically through the use of some 

stochastic elements, which will favor the movement towards better areas, of 

things in the environment in the past, and will open up the optimal convert. 

A. Basic Concept of Particle Swarm Optimization 

PSO is inspired by the social behavior of birds and fish and has similarities to 

other evolutionary algorithms in its approach to finding optimal solutions 

through the exploration and exploitation of the search space. Particles fly 
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around the multidimensional search space. During flight, each particle adjusts 

its position according to its own experience and according to experience of a 

neighboring particle, making use of the best position encountered by itself and 

its neighbor. 

The position and velocity of the i-th particle are represented as the vectors 

𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑) and 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑑) respectively. 

The previous best position of the i-th particle is recorded and represented as 

𝑃𝑏𝑒𝑠𝑡𝑖. The index of best particle among all the particles in the group is 

represented by the 𝐺𝑏𝑒𝑠𝑡𝑑. 

The modified velocity of each particle can be calculated using the current 

velocity and the distance from 𝑃𝑏𝑒𝑠𝑡𝑖𝑑 to 𝐺𝑏𝑒𝑠𝑡𝑑 as shown below: 

𝑉𝑖𝑑
𝑘+1 = 𝑤 ∗ 𝑉𝑖𝑑

𝑘 + 𝐶1 ∗ 𝑟𝑎𝑛𝑑1( ) ∗ (𝑃𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑋𝑖𝑑
𝑘 ) + 𝐶2 ∗ 𝑟𝑎𝑛𝑑2( )

∗ (𝐺𝑏𝑒𝑠𝑡𝑑 − 𝑋𝑖𝑑
𝑘 ) 

𝑖 = 1,2, … , 𝑁𝑝   𝑑 = 1,2, … ,  𝑁𝑔.    (1) 

𝑟𝑎𝑛𝑑1(), 𝑟𝑎𝑛𝑑2() are uniform random numbers in the range [0,1] (Kennedy et 

al., 1995). 

As we see in (1) by combining the components discussed above, a new 

velocity vector is obtained, which orients the position of the particle towards 

a new position 𝑋𝑖𝑑
𝑘+1 in the search space. 

The updated velocity can be used to change the position of each particle in the 

swarm as: 

𝑋𝑖𝑑
𝑘+1 = 𝑋𝑖𝑑

𝑘 + 𝑉𝑖𝑑
𝑘+1        (2) 
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Figure 1. Graph of a particle's position update using current speed  𝑉𝑖𝑑
𝑘+1 

In general, the inertia weight 𝑤 is set according to the following equation (3), 

(Xin et al., 2009). 

B. LDW-PSO 

The inertia weight 𝑤 determines the impact of the particle's current velocity 

on its future velocity. It balances exploration and exploitation in the search 

space. A higher inertia weight allows particles to maintain their current 

velocities, promoting exploration, while a lower inertia weight enables 

particles to focus more on exploiting promising areas. 

In LDW-PSO, 𝑤 is given as  

𝑤 =
(𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛)(𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟)

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
+ 𝑤𝑚𝑖𝑛   (3) 

 where 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 donates the maximum number of allowable iterations, 𝑖𝑡𝑒𝑟 

represents the current iteration times, and 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 are the initial and 

final values of the inertia weight, respectively. The performance of LDW-PSO 

(Bansal et al., 2011), can be improved significantly when 𝑤𝑚𝑎𝑥=0.9 and 

𝑤𝑚𝑖𝑛=0.4. 

Over the years, PSO has undergone modifications or hybrid methods with PSO 

have been employed, by adjusting the inertial weight or tuning the parameters 

(Barrera, et al., 2007. Shi et al., 1998). To propose an enhanced strategy for 

users employing PSO with Linear Decreasing Inertia Weight, a series of 

experiments have been systematically conducted across eight distinct test 

problems. These experiments aim to optimize the performance of the PSO 

algorithm by analyzing its behavior and effectiveness under various 

conditions. The linear decreasing inertia weight is a common variant in PSO, 

where the inertia weight decreases linearly over iterations. 

Benchmarks 

Eight commonly used benchmarks were adopted to evaluate the performance 

of algorithm. Convex functions are characterized by their single global optima 

and smooth landscapes, while non-convex functions exhibit multiple local 

optima, discontinuities, and irregular surfaces (Adorio, 2005). Understanding 

how PSO performs in these distinct function categories is crucial for its 
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practical utility in solving real-world problems where the landscape of the 

objective function may vary from highly structured to highly irregular. 

Convex functions: 

1. Sphere function: 

𝑓1(𝑥) =∑𝑥𝑖

𝑛

𝑖=1

 

2. Booth function: 

𝑓2(𝑥) = (𝑥1 + 2𝑥2 − 7)2 + (2𝑥1 + 𝑥2 − 5)2 

3. Matyas function: 

𝑓3(𝑥) = 0.26(𝑥1
2 + 𝑥2

2) − 0.48𝑥1𝑥2 

4. Three hump Camel Back function: 

𝑓4(𝑥) = 2𝑥1
2 − 1.05𝑥1

4 +
1

6
𝑥1
6 + 𝑥1𝑥2 + 𝑥2

2 

Non convex functions: 

5. Rosenbrock function: 

𝑓5(𝑥) = ∑(100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2)

𝑛−1

𝑖=1

 

6. Bird function: 

𝑓6(𝑥) = (𝑥1−𝑥2)
2 + 𝑠𝑖𝑛𝑥1 exp(1 − cos 𝑥2)

2 + 𝑐𝑜𝑠𝑥2exp⁡(1 − sin 𝑥1)
2 

7. Mishra 04 function: 

𝑓7(𝑥) = √|𝑠𝑖𝑛√|𝑥1
2 + 𝑥2

2|| + 0.01(𝑥1 + 𝑥2) 

8. Rastrigin function 

𝑓8(𝑥) = 10𝑛 +∑(𝑥𝑖
2 − 10 cos(2𝑝𝑖 𝑥𝑖))

𝑛

𝑖=1
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As previously discussed, eight different test optimization functions are used 

for experiments. Table 1 presents these functions, along with their dimensions 

and the range of the search space. 

 

Table 1. Dimensions and the range of the search space of test functions. 

Function Dimension Range 

𝑓1 4 (-20,20) 

𝑓2 2 (-10,10) 

𝑓3 2 (-10,10) 

𝑓4 2 (-10,10) 

𝑓5 4 (-20,20) 

𝑓6 2 (-2𝜋,2𝜋) 

𝑓7 2 (-10,10) 

𝑓8 5 (-10,10) 

 

 

Experimental result and discussion  

For implementing these eight functions, a MATLAB code has been developed. 

The population size was set at 50. The symmetric initialization method was 

used. Each case was tested 10 times on each benchmark. The optimization 

results for 1000, 3000 and 5000 iterations were recorded, respectively with the 

condition 𝑉𝑚𝑎𝑥 = 𝑋𝑚𝑎𝑥. In each case, the values of acceleration parameters 𝐶1 

and 𝐶2, the inertia weight, the dimension of the problem, and other relevant 

parameters are indicated.  

 

In table 2, we have given the results, using PSO with 𝐶1=𝐶2=2 using the inertia 

weight 

𝑤 =
(𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛)(𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟)

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
+ 𝑤𝑚𝑖𝑛  
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Table 2. The optimization results for 1000, 3000 and 5000 iterations for 

each function when 𝐶1=𝐶2=2 and inertia weight given in (3). 

Func BestFun 

1000 

Iterations 

BestRun 

1000 

Iterations 

BestFun 

3000 

Iterations 

BestRun 

3000 

Iterations 

BestFun 

5000 

Iterations 

BestRun 

5000 

Iterations 

𝑓1 9.8588e-

20 

9 1.6383e-

17 

3 0.0038 9 

𝑓2 0 3 0 6 0 7 

𝑓3 0 8 2.2846e-

07 

7 0 10 

𝑓4 0 3 0 8 8.0183e-

08 

5 

𝑓5 1.8209e-

16 

9 0 8 0 6 

𝑓6 -

106.7877 

5 -106.7877 5 -

106.7877 

4 

𝑓7 -0.1761 3 -0.1753 9 -0.1759 3 

𝑓8 0 2 7.2680 2 9.2781 6 

 

For tables 3 and 4, the population sizes of 50, 30, and 20 were chosen for 

1000 iterations because we observed that increasing the number of 

iterations to 3000 and 5000 did not significantly impact performance. In 

table 3, the results are shown with 𝐶1=𝐶2=2.01 and 𝑤 = 1.  

Table 4 presents the results obtained with 𝐶1=𝐶2=2.05 and 𝑤 = 1 for the same 

iterations. 

 

Table 3. The optimization results for population size 50, 30, 20 and 1000 

iterations are considered for each function when 𝐶1=𝐶2=2.01 and 𝑤 = 1. 

Func BestFun 

Popu. 

Size 50  

BestRun 

Popu. 

Size 50 

BestFun 

Popu. Size 

30 

BestRun 

Popu. Size 

30 

BestFun 

Popu. Size 

20 

BestRun 

Popu. Size 

20 

𝑓1 1.8887 8 0.2480 4 0.0794 4 
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In table 4 we have given the results obtained in case were we take the 

accelerated coefficients  𝐶1=𝐶2=2.05 and the inertia weight  𝑤 = 1. 

Table 4. The optimization results for population size 50, 30, 20 and 1000 

iterations are considered for each function when 𝐶1=𝐶2=2.05 and 𝑤 = 1. 

 

Below are the eight graphs representing case 1, case 2 and case 3, with a 

chosen population size of 50 and 1000 iterations. 

𝑓2 0.0019 3 0.0197 1 89 1 

𝑓3 4.1113e-

05 

4 0.0007 2 0.0005 10 

𝑓4 0.0034 6 0.0042 3 0 3 

𝑓5 0.0181 1 0.1213 3 0.0297 2 

𝑓6 -

106.761

1 

3 -106.6362 5 -106.7199 2 

𝑓7 -0.1716 3 0.2259 1 0.2259 1 

𝑓8 13.6706 8 11 9 119 9 

Func 

 

BestFun 

Popu. 

Size 50  

BestRun 

Popu. 

Size 50 

BestFun 

Popu. 

Size 30 

BestRun 

Popu. 

Size 30 

BestFun 

Popu. 

Size 20 

BestRun 

Popu. 

Size 20 

𝑓1 1.3836 7 0.4734 2 0.0056 1 

𝑓2 0 7 0.0012 7 0 3 

𝑓3 0 4 0 7 0.0005 1 

𝑓4 0.0026 3 0 6 0 1 

𝑓5 0.0761 9 0.2029 2 0.3528 10 

𝑓6 -

106.7473 

6 123.3693 1 123.3693 1 

𝑓7 -0.1718 5 0.6189 1 0.6189 1 

𝑓8 16 7 10 3 12 3 
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For each case (linearly decreasing inertia weight with 𝐶1=𝐶2=2 and 𝐶1=𝐶2==2.01, 

𝐶1=𝐶2=2.05 with 𝑤 = 1), the PSO algorithm will be influenced differently in terms 

of exploration and exploitation. The behavior of PSO is influenced by these parameters, 

and the algorithm will try to balance the exploration of the search space and the 

exploitation of promising regions. 
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Figure 2. PSO convergence characteristics case 1, 2, 3 convex functions 

The case 1 for the function in (a) is faster in the early iterations for a population 

of 50 compared to cases 2 and 3, for 1000 iterations. For function (b), we have 

a similar behavior for case 1 and case 2, for the first 150 iterations. In (c), (d) 

we have a similar behavior for both cases 2 and 3, emphasizing that LDW has 

better convergence. 

For non-convex functions, we have the graphs. 
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Figure 3. PSO convergence characteristics case 1, 2, 3 non-convex functions 

In case (e) where we observe that cases 1 and 2 behave similarly for the first 

100 iterations, in function (f), all three cases exhibit similar behavior in the 
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first 100 iterations. However, for function (g), after 50 iterations, we observe 

a consistent behavior between cases 2 and 3. Finally, for function (h), in the 

first 100 iterations, case 3 dominates over case 2, but it is emphasized that 

LDW, i.e., case 1, converges faster than the other two. This result is also based 

on tables 2, 3, and 4 

 

Conclusions 

Through these experiments, we observed that the algorithm's behavior varied 

significantly for different functions, both convex and non-convex. The results 

indicate that the algorithm exhibited distinct characteristics in obtaining 

optimal solutions based on the nature of the underlying function. 

For a convex function, the optimization problem is relatively straightforward 

because there is only one global minimum. PSO works well in such cases. 

Non-convex functions have multiple local minima, and finding the global 

minimum is more challenging. 

The results demonstrate that PSO exhibits strong performance in solving 

convex functions, showcasing its efficiency in smooth and well-behaved 

landscapes. Moreover, the study reveals its adaptability to non-convex 

functions, indicating the algorithm’s potential in handling complex, irregular 

optimization spaces.  

The findings presented in this research contribute to a better understanding of 

PSO’s applicability and limitations when dealing with different function types, 

providing valuable insights for optimization practitioners and researchers. We 

observed that adjusting the parameters can yield different performances in the 

PSO algorithm. Ultimately, this analysis helps shed light on the broader role 

of PSO in solving real-world optimization challenges with varying degrees of 

convexity. 

Our future work will involve interpreting the Bayesian Optimization (BO) 

results of the optimization methods used to solve these test functions. 
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