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Abstract 

This article offers an overview of the concept of entropy and its relationship 

with decision trees. Specifically, it explores Shannon's entropy and its 

influence on information theory, as well as the ID3, C4.5, and C5.0 decision 

trees that are based on this entropy. The article delves into the subject, 

providing a comprehensive understanding of the topic. 
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Përmbledhje 

Ky artikull jep një përshkrim të përgjithshëm të konceptit të entropisë dhe 

pemëve të vendimeve. Ai trajton më gjerësisht entropinë e Shannon-it me 

influencën e saj në teorinë e informacionit, si dhe pemët e vendimeve ID3, 

C4.5 dhe C5.0, të bazuara në këtë entropi. Artikulli thellohet në subjekt, duke 

ofruar një kuptim të plotë të tij. 

Fjalë kyçe: Entropi, Pemë Vendimesh, ID3, C4.5, C5.0, Induksion, Klasifikim. 

Introduction 

The evolving landscape of artificial intelligence and its vast influence across 

various theoretical and practice fields, has underscored the significance of 

understanding and exploring related topics. This article aims to contribute to 

the practical application and usefulness of these topics in critical fields such 

as medicine, robotics, geographic information systems, weather and climate 

forecasting, natural language processing, finance, business, marketing, quality 

control, and cost management. 

With the goal of achieving these benefits, this article aims to focus on the topic 

of Entropy, which serves as a measure of the degree of disorder within a 
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physical system and expresses the level of uncertainty of information within a 

given system. Additionally, the article will provide a comprehensive overview 

of Decision Trees, a highly intuitive tool that offers a visual representation that 

is easily interpreted. It will differentiate between two types of decision trees, 

classification and regression, and compare them according to their distinct 

characteristics. Furthermore, to provide a comprehensive understanding of 

decision tree methodology, the article will describe the two phases of 

constructing classification trees, induction and pruning. 

This article centers on decision trees, particularly ID3, C4.5, and C5.0 

algorithms, which are entropy-based decision trees. For each of them, the 

article will outline the advantages and disadvantages, the selection of splitting 

criterion, the issues and their minimization or avoidance, the types of data they 

use, their behavior in the presence of uncertainties, noise or missing data. 

Furthermore, the article will provide recent applications of these algorithms. 

To remain within this article subject’s framework, only decision trees that use 

entropy as a tool for classification and prediction will be taken into 

consideration. 

Entropy 

Entropy is a scientific concept that was first introduced by Clausius (1868) as 

a new formulation of the second law of thermodynamics, and subsequently 

used by Boltzmann as a statistical interpretation of this principle. 

Entropy has wide-ranging applications in numerous fields. In physics, it 

describes the disorder or randomness of particles in a given system. In 

chemistry, entropy is used to capture the tendency of a system toward 

increased disorder or randomness. Furthermore, entropy is widely used as a 

measure of complexity for systems, such as the study of biological systems, 

where it is used to quantify the complexity of neural networks or gene 

expression patterns. Entropy also plays a vital role in practical applications, 

such as cryptography, where it is employed in generating secure encryption 

keys, as well as in data compression. 

Despite having varied definitions in different fields, the essence and the 

property that unites these fields is the characterization of the degree of 

uncertainty, disorder and randomness within a system. Shannon (1948) used 

this fundamental property of entropy to describe complex systems through the 
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relative frequency of their components, which led to the creation of 

Information Theory. From an information theory perspective, entropy 

measures the uncertainty or randomness of an event in a system. In this regard, 

it is commonly held that information reduces uncertainty, while entropy 

increases uncertainty. Brillouin (1959) posits that entropy and information 

exhibit an inverse relationship: specifically, the greater the information 

available, the smaller the entropy will be, and vice versa. Since the concept of 

entropy as a measure of uncertainty can sometimes cause confusion, Pearl 

(1979) suggested that it should be viewed as a measure of the effort required 

to remove uncertainty from a system. 

The subject of interest for this article is the concept of Shannon’s entropy, 

expressed as: 

𝐻𝑖 = - ∑ p
i
∙ log(p

i
)

n

i=1

          (1) 

where 𝑙𝑜𝑔 ≡ 𝑙𝑜𝑔2, 𝑛 is the number of system’s different states and p
i
 is the 

probability of event i. The logarithm used for Shannon's entropy is generally 

the binary logarithm. That is the reason entropy is measured in binary units 

(bits). If necessary, the logarithmic base used in Shannon's entropy can be 

altered, provided that the base is > 1. In such cases, a straightforward 

multiplication of the entropy by a constant 𝐾  converts the measure to the new 

base, Shannon (1948). 

Figure 1 depicts the entropy curve for a two-event system, where the measure 

exhibits a parabolic shape with its maximum occurring at a probability of 0.5, 

and its minimum values coinciding with probabilities of 0 and 1, respectively. 

Since the entropy function provides a quantitative expression of the 

probabilistic uncertainty associated with the outcomes of a given system, it 

increases with the degree of uncertainty of the event and decreases as the event 

becomes more predictable. In the case of Figure 1, the highest level of 

uncertainty corresponds to a probability of 0.5, while the smallest values occur 

at probabilities of 0 and 1. 
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Figure 1: Shannon’s entropy for a two-event system 

Conditional Entropy: Conditional entropy is a critical concept in information 

theory, and its relevance will become apparent in the following sections of this 

article. Consider two dependent systems A and B, with 𝑎𝑖 and 𝑏𝑗 denoting the 

possible states of each system, respectively. The conditional probability 

𝑃(𝑏𝑗|𝑎𝑖) represents the likelihood of system B being in state 𝑏𝑗 given that 

system A is in state 𝑎𝑖. In this context, the entropy of system B given that 

system A is in state 𝑎𝑖 can be calculated by applying Equation (1) to the 

conditional probability distribution: 

H(B|𝑎𝑖) = - ∑ p(𝑏𝑗|𝑎𝑖)∙ log p(𝑏𝑗|𝑎𝑖)          (2)

n

j=1

 

Equation (2) provides the mean to quantify the conditional entropy of a system 

in information theory, revealing the amount of uncertainty that remains in 

system B when the information pertaining to system A is known. This suggests 

that entropy is a measure of the degree of uncertainty associated with a given 

variable. Moreover, as information acquisition serves to diminish uncertainty, 

the reduction in entropy can be interpreted as an indicator of the amount of 

information gained about a variable (Perche, 1999). 

From a data perspective, entropy serves as a measure of diversity in a given 

system. Specifically, the greater the number of distinct states present in a 

system, the larger the system and the more difficult it becomes to ascertain its 

current state, leading to higher entropy values. Conversely, a system with 
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fewer states will exhibit lower entropy values as its state can be more readily 

determined (Marcon, 2019). 

As a fundamental concept in information theory, entropy plays a central role 

in numerous domains such as databases, data mining, machine learning, and 

artificial intelligence. Irrespective of the specific characteristics of a given 

database, its composition, or its intended application, there is often a 

requirement for classification and categorization of data into distinct classes. 

In this regard, certain types of machine learning algorithms, the Decision 

Trees, have proven to be highly valuable tools. 

Entropy, a foundational construct in information theory, assumes a pivotal role 

across multiple domains, encompassing databases, data mining, machine 

learning, and artificial intelligence. Its significance doesn't depend on the 

specific details of each database, how they're put together, or what they're 

meant for. Rather, entropy stands as a universal metric, providing a 

quantitative assessment of diversity or disorder inherent in datasets. In 

practical terms, there is a common need to organize and sort data into specific 

groups, regardless of the details of the database. This need is important for 

good data analysis and decision-making. Here, we introduce Decision Trees, 

a type of machine learning that's known for being effective. These algorithms 

are useful for finding detailed patterns in data, some of them using entropy as 

a guide. Decision Trees do not just help with sorting data; they also give a 

detailed understanding of the complexity of data. In our review of Decision 

Trees, we aim to explain how these algorithms handle different data situations, 

using entropy to improve their effectiveness in various areas. 

1 Decision trees 

The decision tree is a recursive supervised learning algorithm widely used in 

classification and regression. Unlike other methods which operate in a single 

step, the decision tree employs a hierarchical approach to explore, classify, 

and make decisions. Since the recognition of artificial intelligence as a distinct 

field, machine learning, including decision trees, has been the central focus of 

extensive studies, research, and applications. Morgan and Sonquist (1963) 

were the pioneers in employing decision trees in an explanation and prediction 

process. Subsequently, several other works, such as Morgan and Messenger 

(THAID), Kass (CHAID), Breiman et al. (1984) (the well-known CART 

algorithm), Quinlan (ID3, C4.5 and C5.0) and Rakotomalala (2005), have 
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contributed to the development of decision trees. According to Santos (2015), 

the decision tree serves two purposes: exploration – understanding the 

structure and relationships between instances and attributes of a dataset and 

generating tree rules (which can be a purpose in itself), and prediction – 

presenting new information with the aid of established rules. 

With the rapid technological advancements of recent years, decision trees have 

found widespread application in numerous theoretical and real-world 

domains. In medicine, decision trees aid in the analysis of symptoms, test 

results, and imaging. Robotics employs decision trees for predicting 

movements, image and object recognition, and adapting to new environments. 

Decision trees are also extensively used in natural language processing for text 

classification, in finance for managing risk and approving loans, in business 

for predictive analysis (Lee et al., 2022), and in marketing for market analysis. 

Furthermore, decision trees assist in quality and cost control by analyzing 

production quality and reducing costs. The latest advancements in weather and 

climate, where the uncertainty of prediction is as crucial as the prediction 

itself, have also benefited from decision trees (ECMWF1, 2023). Other notable 

applications of decision trees include the automation of odor recognition and 

classification (Mccoy et al., 2003) and their impact on geographic information 

systems, including the prediction and measurement of urban expansion and 

remote sensing. 

In the context of data sets used in decision trees, it is important to clarify the 

following terminology: class – a subset of all the records or results that the 

algorithm attempts to predict; attribute – the data that characterizes a record 

and is used as input to make decisions; instance – a record in the data set. 

Decision trees are composed of three main elements: nodes – different values 

of attributes used to differentiate between classes as much as possible and to 

minimize diversity within the same class (the first node of the tree and the first 

element that the tree-creating algorithm will create is called the root, from 

which the decisions will be derived); branches – different attribute values used 

for classification; leaves – classes that include objects that are very similar to 

each other. 

                                                           
1 European Centre for Medium-Range Weather Forecasts – ECMWF (2023):  

https://lms.ecmwf.int/pages/index.html 
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There are two main variants of decision trees: classification and regression. 

The classification variant of decision trees is designed to create homogeneous 

subsets of data by recursively partitioning the data based on their attributes. 

By doing so, classification trees can predict the dependent variable based on 

the characteristics of several independent variables. On the other hand, 

regression trees use recursive partitioning to approximate the proportions of 

classes as well as to predict a target attribute, provided that the latter is 

continuous in nature, (Xu et al., 2005). They predict the value of a continuous 

variable based on some other continuous or categorical variables. 

Table 1 provides a comparison of decision trees for classification and 

regression based on several key aspects, (Loh, 2011) (Razi & Athappilly, 

2005) (Salih & Abdulazeez, 2021). 

 

Table 1: Comparing classification and regression decision trees 

 
Classification D.T. Regression D.T. 

Similarities 

Objective 
Models and rules 

prediction 

Models and rules 

prediction 

Structure Hierarchy Hierarchy 

Functioning 
Recursive 

partitioning 

Recursive 

partitioning 

Type of procedure Non-parametric Non-parametric 

Handling of missing 

data 
Suitable Suitable 

Overfitting Tends to overfit Tends to overfit 

Scaling 
Difficulty for large 

datasets 

Difficulty for large 

datasets 

 Differences 

Data type for 

prediction 
Categorical Continuous 

Split criterion 

Information gain 

(Entropy) / Gini 

index 

Variance 

minimization 
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Evaluation metrics 
Precision, Recall and 

F1-score 
MSE and MAE 

Sensitivity to 

outliers 
Suitable Partially suitable 

 

Table 1 is partitioned into two sections, wherein the first segment displays the 

commonalities shared by classification and regression trees, and the second 

section presents their distinguishing features.  

As depicted, some of the shared aspects are: 

– both trees aim to predict models and rules; 

– the structure of both trees is hierarchical. However, it is worth mentioning 

that in cases where the links between the attribute to be predicted and the 

predictive attributes need to be displayed, regression trees have better 

representation in the form of a graph; 

– both trees employ recursive partitioning and are non-parametric; 

– techniques have been devised for managing missing data in both trees, 

rendering them more suitable for real models; 

– despite these advantages, these types of trees suffer from several limitations 

such as over-fitting, which pertains to their tendency to become too complex 

while classifying and fitting all data, leading to good training abilities but 

reduced generalization of classifications and predictions; 

– these types of trees experience difficulty in processing large datasets due to 

the complexity of the mathematical operations involved, which must be 

carried out recursively for each instance and for each of its attributes. 

In contrast, there are several differences between classification and regression 

trees, such as: 

– the data provided by classification trees are categorical (data that can be 

divided into categories or groups), while data provided by regression trees are 

continuous (data that can take infinite values in an assigned interval); 

– classification trees use information gain as a criterion for splitting nodes, 

which includes entropy or the Gini index, whereas regression trees employ 

variance minimization; 
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– different evaluation metrics are utilized by each type of tree. Classification 

trees use techniques such as Precision, Recall, or F1-score, whereas regression 

trees rely on Mean Squared Error and Mean Absolute Error; 

– data often do not follow a specific pattern and may contain what are called 

outliers, which are better fit by classification trees rather than regression ones. 

Although regression decision trees have been the subject of considerable 

research and interest, this article will solely focus on classification decision 

trees since they specifically make use of entropy. 

1.1 Induction 

The process of creating decision trees for classification can generally be 

divided into two stages: induction and pruning. The induction – or 

construction phase – is responsible for establishing a set of rules that enable 

instances (objects) to be classified based on their attributes (Quinlan, 1986). 

Initially, a training set is used to determine the target attribute for prediction. 

Subsequently, supporting attributes are defined that will serve to predict (or 

classify) the target attribute. The next step is to select the attribute that 

maximizes the homogeneity of the data between the classes to be created. This 

selection is based on the Information Gain (IG) criterion, where the attribute 

with the highest IG is chosen. As a reminder, the Information Gain is 

calculated using the entropy equation (1), expressed as: 

IG(TA, SA)=H(TA)- ∑
TAv

TA
∙H(TAv)

v∈SA

          (3) 

In the above equation, 𝑇𝐴 refers to the target attribute (to be predicted), 𝑆𝐴 is 

the supporting (predictor) attribute, and 𝑇𝐴𝑣 represents a subset of 𝑇𝐴 for 

which 𝑆𝐴 attribute has the value 𝑣. 

The first attribute to be selected becomes the root of the tree. Subsequent node 

selections are performed recursively based on the steps outlined above until 

the leaves of the tree are reached, and their respective classes are determined. 

The purpose of the induction phase in a decision tree is to establish a 

classification system for the objects in the training set that can be applied to 

other sets not previously tested in the tree. 
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1.2 Pruning 

Breiman et al. (1984) have suggested that the performance of decision trees is 

primarily dependent on the size of the tree. In most cases, decision tree 

algorithms aim to create models that are best suited to the provided data, which 

can result in the development of highly complex trees, leading to the undesired 

phenomenon of overfitting. 

One way to prevent overfitting is through the technique of pruning. Pruning 

involves reducing the size of the tree by removing branches that contribute 

little to the classification or prediction process. Essentially, pruning serves to 

control the complexity of the tree, resulting in a sub-tree that avoids the risk 

of overfitting and allows for generalization of the decision tree. There are three 

main types of pruning, as identified by Kotsiantis (2013): pre-pruning, post-

pruning, and data pre-processing: 

– Pre-pruning involves setting a limit for the tree's maximum depth, after 

which it is cut; 

– In post-pruning, the tree grows to its full length and is then pruned by 

removing branches that do not improve its accuracy; 

– Data pre-processing, while not directly related to the tree, involves 

simplifying the data before it is used by the decision tree. 

The literature suggests that there are various pruning techniques available for 

decision trees, and no single technique has been found to outperform the others 

significantly (Esposito et al., 1997). 

Upon completion of the construction and pruning phases, the resulting tree can 

be tested on a validation set to evaluate its performance using the metrics 

described in Table 1. This step is crucial in determining the effectiveness of 

the decision tree model in accurately classifying new, unseen data. 

2. Entropy-Based Decision Trees 

Thus far, this article has aimed to provide a comprehensive overview of 

entropy and decision trees. Moving forward, the focus will be on exploring 

three decision trees that use entropy as a component in their operation: ID3, 

C4.5, and C5.0. 

2.1 ID3 
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The ID3 algorithm, developed by Ross Quinlan (Quinlan, 1986), is widely 

recognized for its simplicity, speed, and interpretability in creating 

classification decision trees. Due to its straightforwardness and popularity, 

ID3 has become one of the most widely used decision tree algorithms. The 

algorithm selects the splitting criterion for each node based on the maximum 

information gain (equation 3) and the smallest entropy. The objective of ID3 

is to classify a target attribute using other attributes, while constructing a tree 

that seeks to minimize the entropy at each node.  

The issue of overfitting is a significant challenge faced by the ID3 algorithm, 

as noted in the pruning section. 

Another challenge is the method of selecting attributes, which relies on 

information gain. Kononenko et al. (1984) have demonstrated that this 

criterion favors multi-valued attributes, which can result in biased attribute 

selection. To mitigate this issue, a condition can be imposed to limit each trial 

to only two outcomes. Nonetheless, this tendency to favor attributes with a 

greater variety of values can result in good performance on training sets when 

used to predict the majority class, but may lead to poor predictions on unseen 

data. 

In addition to over-fitting, ID3 and other tree-building algorithms face another 

problem, which is noise in the data. Noise in the data refers to inaccuracies in 

the attribute values or class labels, and it can seriously affect the accuracy of 

the decision tree. Since noise in the data is inevitable, to address this issue 

Quinlan (1986) proposed two modifications to the ID3 algorithm: (a) enable 

the algorithm to determine the optimal point at which to stop testing attributes 

to improve classification/prediction accuracy; (b) enable the algorithm to 

handle insufficient, incomplete or incorrect attributes. To achieve the latter, 

three approaches are suggested: (i) replacing an unknown attribute value with 

its most frequent value; (ii) using Bayesian method; (iii) using a decision tree 

to determine unknown values. Quinlan (1986) found that the decision tree 

approach was the most effective, while value substitution and the Bayesian 

method yielded poorer results – despite the latter having a smaller error rate. 

Nevertheless, ID3 remains sensitive to missing data, even with these 

modifications. 

ID3 faces challenges when working with continuous data. The algorithm is 

designed to handle categorical data and cannot handle continuous data 
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directly. As a solution, Han et al. (2012) propose the use of discretization 

techniques, which involve dividing continuous data into discrete intervals, 

allowing the algorithm to handle these data types. However, this approach can 

lead to loss of information and reduce the accuracy of the resulting decision 

tree. Therefore, selecting an appropriate discretization method is critical to 

ensuring the accuracy of ID3 when dealing with continuous data. 

ID3 is a popular and widely used algorithm for classification due to its 

simplicity, comprehensibility, efficiency, and accuracy. Its applications span 

across various fields, including Geographic Information Systems (GIS). In 

GIS, ID3, and entropy are the basis for the work of Li and Claramunt (2006), 

who highlight the difference between conventional and spatial entropy. Other 

notable works that have used ID3 include Wang et al. (2017) with a new 

approach for selecting the splitting attribute, and Soni et al. (2017) with an 

improved version of ID3 for emotion-based text classification. These studies 

demonstrate the versatility of the ID3 algorithm and its potential for solving 

various classification problems in different fields. 

2.2 C4.5 

C4.5 algorithm, again developed by Ross Quinlan (Quinlan, 1993), represents 

a significant improvement over its predecessor, ID3. Like ID3, C4.5 is a 

powerful algorithm that creates classification decision trees for classification 

and prediction purposes. Given that this algorithm builds upon the ID3 

framework, the details of its construction and operation will not be reiterated 

in this section. 

The C4.5 algorithm is another decision tree creating algorithm that uses 

entropy. However, unlike ID3 – which uses information gain as a splitting 

criterion – C4.5 employs the gain ratio. To determine the gain ratio, it is 

necessary to introduce a new concept called Split Information. Split 

Information represents a normalization of the information gain derived from 

the ID3 algorithm and indicates the potential information obtained from 

splitting the data set. It is expressed as: 

Split Info.(S,TA)=  – ∑ (
|Si|

|S|
∙ log

2

|Si|

|S|
)          (4)

n

i=1

 

Where: 𝑇𝐴 represents the target attribute for testing, 𝑆 denotes the entire 



161                                                                                                          JNS 34/2023 

 

 

dataset, and 𝑆𝑖 represents a subset of 𝑆 for which it takes on values ranging 

from 𝑖 through 𝑛 for attribute 𝑇𝐴. 

Once the Split Information has been determined and the information gain has 

been obtained using Equation (3), the gain ratio is defined as follows: 

Gain Ratio(TA)= 
IG(TA)

Split Info.(S,TA)
          (5) 

Following the testing of all attributes, the one with the highest gain ratio is 

selected for splitting. However, it is possible for the Split Information to 

become 0 or approach this value. In such cases, all or almost all instances are 

grouped into a single branch, resulting in a perfect split, where the entropy is 

0 and there is no uncertainty in the result. This scenario can occur as a result 

of overfitting. According to Han et al. (2012) if this value approaches 0, it can 

lead to unstable gain ratio. They suggest that to avoid this issue, one option is 

to impose the condition that the information gain for a given test must be at 

least as large as the average information gain of all tests performed. Another 

strategy is to control the complexity of the tree by applying pruning 

techniques, which have been previously discussed in this article. 

As an advancement over ID3, C4.5 allows for the utilization of both 

categorical and continuous data. To process continuous data, C4.5 employs a 

discretization technique, where the continuous data is partitioned into a series 

of discrete intervals or "bins". Subsequently, these bins are treated in the same 

manner as categorical data, enabling the decision tree to make decisions. 

Nevertheless, the efficacy of this technique hinges on the type of the training 

set and the used parameters (Quinlan, 1996a). 

Another means by which the C4.5 algorithm mitigates against overfitting is 

through the implementation of pruning during or after tree construction. When 

pruning is applied after the tree has been built, pessimistic pruning, as 

described by Quinlan (1987), is one possible technique that may be used. This 

method involves testing each sub-tree of the tree constructed against a 

validation set, with the aim of identifying the error rate of each. Pruning is 

only performed if the sub-tree's error rate exceeds that of the entire tree, based 

on the validation set. 

In the real world, uncertainty and missing data are common occurrences that 

directly impact the accuracy of decision tree predictions. It is therefore 
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important to consider both of these factors for the most accurate and efficient 

classifications. To this end, Jenhani et al. (2009) propose a clustering method 

for dealing with uncertainty and is applied in the attribute selection criterion 

of the C4.5 algorithm – gain ratio. This method can be achieved through two 

strategies, namely baseline and hierarchical. On the other hand, Twala et al. 

(2008) address the issue of missing data and propose a method that groups 

missing data for an attribute being considered for splitting, into a separate set 

– thus both categorical and continuous data can be handled. 

The C4.5 algorithm has become a popular and widely used decision tree 

algorithm, which has led to numerous studies focused on its improvement 

(Kotsiantis, 2013). One approach to improving the algorithm is presented by 

Yao et al. (2005), which suggests using attributes with greater than average 

gain ratio and merging high entropy branches to reduce overfitting and 

increase accuracy. Ruggieri (2002) proposes an initial arrangement of the data 

as an approach to improving the algorithm. Muslim et al. (2018) presents a 

new method called Particle Swarm Optimization for breast cancer diagnosis. 

These studies, along with others, demonstrate ongoing efforts to enhance the 

performance and accuracy of the C4.5 algorithm. 

2.3 C5.0 

C5.0 is the third decision tree algorithm developed by Ross Quinlan as an 

improvement over the C4.5 algorithm. This algorithm is capable of creating 

binary or multi-branch decision trees based on several attributes and training 

sets. The created decision trees can then be tested on several validation sets 

and finally used for classification and prediction on new sets. At each node of 

the tree, the splitting criterion is determined using the information gain 

(equation 3). This indicates the amount of entropy reduction obtained by 

splitting the data according to a given attribute, similar to the ID3 algorithm. 

C5.0 is a highly effective tree-building algorithm that performs classification 

and prediction with nearly the same accuracy as other machine learning 

algorithms. It boasts several strengths, as noted by Lantz (2015), including its 

efficiency in comparison to earlier versions, as well as its ability to handle 

both large and small data sets. C5.0 also excels at treating categorical and 

continuous data, and its split and pruning criterion optimization leads to faster 

tree creation. However, like its predecessors, C5.0 is susceptible to overfitting. 

To minimize overfitting, post-pruning is typically used. 
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Despite its strengths, the C5.0 algorithm has several weaknesses. For example, 

while the algorithm has reduced its tendency to favor multi-valued attributes, 

this bias still exists. Additionally, small changes in the training set can result 

in significant changes in the decision logic. Finally, as the size of the tree 

increases, it can become more challenging to interpret. 

The C5.0 algorithm has been enhanced with several new techniques, including 

the cost of attribute misclassification and boosting, as noted by Bujlow et al. 

(2012). Misclassification cost is a technique that assigns different costs to 

instance misclassifications. Given that classification errors can vary, the 

implications of misclassification will also differ. As a result, algorithms assign 

costs to these errors. This approach enables the algorithm to consider both 

information gain and the costs associated with incorrect classifications, 

thereby constructing a tree that maximizes information gain while minimizing 

misclassifications. 

Another technique, known as boosting (Quinlan, 1996b), involves 

constructing multiple decision trees that use all available instances in the 

training set and assign weights based on their importance. Each tree makes a 

contribution to the weights of the instances, allowing subsequent trees to focus 

more on the most relevant ones. Boosting prioritizes misclassified instances 

by giving them greater weight, resulting in improved classification accuracy 

and more accurate predictions. 

Since its initial development, the C5.0 algorithm has undergone multiple 

modifications and improvements, and has been widely implemented in both 

commercial and open-source applications. Notable studies employing C5.0 

include Pang and Gong's (2009) assessment of individual loans, Kristóf and 

Virág's (2022) prediction of E.U. bank failures, Guo et al. (2021) modeling of 

areas affected by landslides, Khadiev et al. (2019) proposal of a quantum 

version based on this algorithm, among others. 

Conclusions 

This article provided a summary of some key aspects related to the concept of 

entropy and its relationship with Decision Trees. 

While the term "entropy" can have varying interpretations across different 

fields, it is generally regarded as a measure of the uncertainty and randomness 

present within a system. The focus of this article was on Shannon's entropy, 
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which serves as the foundation of Information Theory. 

The article also touches on the topic of conditional entropy, which represents 

the degree of uncertainty within a system when additional information is 

available about another system. These concepts of entropy have been 

employed in the creation of various types of decision trees. 

This article has attempted to provide a modest introductory overview of 

decision trees, since they constitute a vast area of study within machine 

learning and artificial intelligence. Specifically, the article focuses on decision 

trees that use the concept of entropy as a means of splitting instance attributes 

within datasets. 

This article also touches on the two primary stages of decision tree creation, 

namely induction and pruning. 

This article has examined the ID3, C4.5, and C5.0 tree algorithms, all of which 

use the concept of entropy as a means of splitting instance attributes within 

datasets. For each algorithm, the article presents an overview of their 

respective advantages and disadvantages, along with their avoidance 

techniques, ongoing improvements, and recent proposals and applications. 

In conclusion, decision trees based on the entropy splitting criterion represent 

a powerful tool for classification and prediction tasks. While classifications 

may seem like a small part of procedural functions, they play a crucial role in 

more complex tasks such as robotic movements and computer game 

development. 

Future Works 

Beyond the important role of entropy discussed in this article, it is worth 

noting that it has recently found new applications in Geographic Information 

Systems (GIS) for showing the concentration and spatial distribution of 

variables. 

While the current article had a focus on the objective uses of entropy in 

decision trees, future research will delve more deeply into this specific 

application of entropy in GIS. 
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