
126 JNS 34/2023

AUTHENTICATING SIGNATURES BASED ON THE B-

SPLINE TECHNIQUE

RINELA KAPÇIU1, BRIKENA PRENI2, JULIAN MATA3

1,3Department of Computer Science, Faculty of Information Technology,

Aleksander Moisiu University of Durres, Albania

2Department of Mathematics, Faculty of Engineering Mathematics and

Engineering Physics, Polytechnic University of Tirana, Albania

e-mail: rinelakapciu@uamd.edu.al

Abstract

This research article presents a novel approach for genuity checks of digital

signatures based on B-spline curves, a mathematical representation widely

used in computer-aided design (CAD) and graphics. The method transforms

the signature into a mathematical representation using knots, control points,

and curve interpolation, which is then used to develop a signature verification

algorithm. Techniques in signature image processing and optimization

methods, such as BGFC, are employed to address these challenges. OpenCV

is used for signature image processing and extraction, with morphological

mathematical methods for skeletisation. An optimization algorithm like BGFC

is used to fit the B-spline with the traced signature curve, aligning the traced

curve's initial guess with the signature's shape. The research uses a

comprehensive dataset of signatures to validate the effectiveness of the

proposed B-spline-based genuity check. Experimental results show the

algorithm can accurately distinguish between genuine and forged signatures,

even in the presence of distortions and noise. The computational efficiency of

the method positions it as a practical solution for real-time signature

authentication applications. This work contributes to digital signature

verification by enhancing the accuracy and reliability of genuity checks, with

potential applications in secure document management, financial

transactions, and other digital interactions.

Key words: B–Spline, AI, BGFC, skeletisation, curve fitting, automation, sign.

mailto:rinelakapciu@uamd.edu.al

127 JNS 34/2023

Përmbledhje

Në këtë artikull paraqitet një metodë shumë e saktë për kontrrollinin e

nënshkrimit dixhital duke u bazuar në sheshimin me anë të kurvave B-spline,

një paraqitje matematikore gjerësist e përdorur në dizenjimet kompjyterike

(CAD) dhe grafike. Metoda transformon nënshkrimin në një paraqitje

matematikore duke përdorur nyje, pika kontrolli dhe interpolim me anë të

kurvave të lakuara, të cilat më pas përdoren për të zhvilluar një algoritëm për

verifikimin e nënshkrimit. Teknikat për procesimin e imazhit të nënshkrimit

dhe metodat optimizuese, si për shembull BGFC, janë përdorur për adresuar

këto sfida. OpenCV është përdorur për procesimin e nënshkrimit si imazh dhe

për ekstraktimin e saj, me ndihmën e metodave të matematikës morfologjike

për skeletizimin e problemit. Një algoritëm optimizues si BGFC përdoret për

të përshtatur kurbën B-spline me kurbën e nënshkrimit të gjurmuar, duke

përafruar interpolimin fillestar të kurbës me nënshkrimin origjinal. për këtë

punim është përdorur një databazë publike me nënshkrime për të kryer

validimin e efektshmërisë së metodës së propozuar, e cila bazohet në

interpolimin me anë të B-spline-ve. Rezultatet eksperimentale tregojnë se

algoritmi dallon me saktësi nënshkrimet origjinale nga ato të fallcifikara, edhe

në prezencën e shtrembërimeve ose zhurmave. Efektshmëra llogaritës e

metodës e pozicionon atë ndër zgjidhjet më praktike për verifikimin e

nënshkrimit në kohë reale. Ky punim kontribuon në verikifikimin e nënshkrimit

dixhital duke rritur saktësinë dhe besueshmërinë në kontrollet e origjinalitetit,

me aplikime të mundshme në menaxhimin e sigurt të dokumentave,

transaksionet financiare dhe ndërveprime të tjera dixhitale.

Fjalë kyçe: B–Spline, AI, BGFC, skeletizim, sheshimi me vijë të lakuar,

automatizim, nënshkrim.

Introduction

The B-spline curve is a powerful and versatile approach to curve design,

addressing issues with the Bezier curve. It addresses problems with Bezier

curves and is widely used in 3D animations to determine the path of motion

and interpret critical segments. B-splines are also used to model animation

characters, animated movies, and True Type fonts, providing a comprehensive

solution to curve design challenges.

B-spline models were first mentioned by (Schoenberg. 1969). Initially, the

practical application of B-spline curves and surfaces was limited by the

instability of the algorithms for their calculation. This setback was resolved by

128 JNS 34/2023

(de Boor 1972), who proposed an algorithm for numerical computation based

on a recursive template. Then, Reisenfeld algorithm reveals that the B-spline

is a powerful tool for representing free-form shapes and applied the B-spline

base for curve definitions.

B-spline curves are a powerful technique used in modelling complex shapes

and surfaces, often used in computer modelling and graphic design

environments like AutoCAD and Blender. These curves are divided into small,

controllable segments, making them suitable for creating and manipulating

various graphical objects and creating moving animations. NURBS, or Non-

Uniform Rational B-Spline, is a more common interface in 3D modelling,

including B-spline curves and weight settings.

This study aims to use image manipulation techniques, such as signatures, to

examine and present signatures as binary images using Computer Vision

technology. A dataset of signature images is prepared using a moderate

number of signature images from firm authors, and a dataset of forged

signatures is created to evaluate the accuracy of the model used. A computer

model is trained for signature recognition in the signature photo dataset, and

the model is tested using forged signature images to determine its ability to

distinguish them from actual signatures.

The main goal of this study is to develop an efficient and accurate tool for

verifying the authenticity of signatures using computer technologies and

related sciences, focusing on signature authentication and detecting forged

signatures in security and fraud prevention contexts.

The order of the remaining paper is as follows: Relevant research in this field

is compiled in the following sections. The suggested algorithm is described

and the methods utilized are defined.

B-splines in pattern recognition

B-Spline theory has been widely developed and is explained in detail in (de

Boor, 1972). This section outlines the necessary elements from the theory to

comprehend the application of B-spline in this research.

Using standard computer-aided modeling techniques like curves and B-spline

surfaces, geometric modeling creates and portrays free-form curves and

surfaces.

The B-splines can describe various forms of curves (Rogers, 2001). Bezier

curves generalization are splines with an orthonormal basis of recursive

functions, consisting of curves with polynomials at knot points. The degree of

129 JNS 34/2023

these polynomials is identical to that of a B-spline, with cubic segments being

an essential part of these curves.

A spline curve is a continuous curve formed by joining a sequence of

segments. The B-spline curve addresses the problems with the Bezier curve.

Bezier curves are a powerful and versatile approach to curve design, used in

3D animation to define the path of an object's movement. They are also used

to model animation characters and fonts of various shapes, with their two-

dimensional curves used for rendering key segments and their three-

dimensional path defined by B-splines. B-spline models were first mentioned

by Schoenberg (Schoenberg, 1969). The initial practical application of B-

spline curves and surfaces was restricted due to the instability of their

calculation algorithms. This obstacle was solved by Cox and de [de Boor 1972],

who proposed an algorithm for numerical calculation based on a recursive

model. Then, using the Reisenfeld algorithm is clearly found that the B-spline

is a powerful tool for representing free-form shapes and applied the B-spline

basis for curve definitions.

The B-spline's flexibility can be enhanced by increasing its order and inserting

nodes.

The B-spline curve's flexibility is being enhanced.

If Sk=[𝐵0
𝑘(𝑡) 𝐵1

𝑘(𝑡) … 𝐵𝑛
𝑘(𝑡)]T is a B-spline basis defined in vector form, then

Sk(P;t)= 𝑆𝑘
𝑇 𝑃 = ∑ 𝐵𝑖

𝑘(𝑡)𝑃𝑖
𝑛
𝑖=0 , 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑛+1)

Is the B-spline curve defined by P=[𝑃0 … 𝑃𝑛]T.

It is clear that the choice of basis functions and the choice of knot vectors

significantly affect the shape of the B-spline curve.

The B-spline curve maintains smoothness with increasing order, while

subdivision reduces the variability of embedded nodes, which depends on the

diversity of elements in the node vector. Subdivision reduces variability to

order k-2 for node vectors with few components.

By increasing the scale of the B-spline curve, the new curve should be

identical to the original curve, so

Sk(P;t)= ∑ 𝐵𝑖
𝑘(𝑡)𝑃𝑖

𝑛+1
𝑖=1 = ∑ 𝐵𝑖

𝑘+1(𝑡)𝑃𝑖
∗𝑛+1

𝑖=1

where 𝑃𝑖
∗ are the polygon control points for the new curve.

130 JNS 34/2023

The B-spline curve's scale or order can be increased to make it smoother

compared to the control polygon. However, the presence of many internal

elements in the node vector reduces continuity in the node's value, resulting in

a plot close to a control polygon. This also increases the curve's flexibility by

introducing additional elements. There are two basic methods of inserting

nodes. The first method contains the so-called Oslo algorithm developed by

(de Boor, 1972; Rogers. 2001) and his colleagues and the Prautzch algorithm,

which consists of simultaneously inserting multiple elements into the node

vector. The improved method consists of repeatedly inserting a single element

into the vector node. Let it be an initial curve with a node vector like this:

Sk(P;t)= ∑ 𝐵𝑖
𝑘(𝑡)𝑃𝑖

𝑛+1
𝑖=1 , 𝜏 ∈ [𝑡1, 𝑡2, … 𝑡𝑛+𝑘+1]

The new curve, which is obtained after inserting the nodes, is determined by

Rk(P;s)= ∑ 𝑀𝑗
𝑘(𝑠)𝐶𝑗

𝑚+1
𝑗=1 , 𝜏∗ ∈ [𝑦1, 𝑦2, … 𝑦𝑚+𝑘+1]

m>n , is the new node vector and Sk(P;t)= Rk(P;s).

The Oslo algorithm is used to determine the new points of the control polygon.

Cj=∑ 𝛼𝑖.𝑗
𝑘 𝑃𝑖

𝑛+1
𝑖=1 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

Where 𝛼𝑖.𝑗
𝑘 are given by recursive relation.

𝛼𝑖.𝑗
𝑘 = {

1 𝑡𝑖 ≤ 𝑦𝑗 ≤ 𝑡𝑖1

0 𝑛𝑑𝑟𝑦𝑠ℎ𝑒
 ,

𝛼𝑖.𝑗
𝑘 =

𝑦𝑗+𝑘−1−𝑡𝑖

𝑡𝑗+𝑘−1−𝑡𝑖
𝛼𝑖.𝑗

𝑘−1 +
𝑡𝑗+𝑘−𝑦𝑖+𝑘−1

𝑡𝑗+𝑘−𝑡𝑖
𝛼𝑖+1.𝑗

𝑘−1 ,

Where ∑ 𝛼𝑖.𝑗
𝑘 = 1.𝑛+1

𝑖=1

The original knot vector, if uniform, periodic, or open, may not consistently

produce end vector knots. A constant knot vector can be obtained by inserting

middle knots for each non-empty interval.

131 JNS 34/2023

The implementation of b-splines in signature authetification

The signature serves as a tool for verifying document authorship and

authenticity, a task that requires specialized techniques. Mathematical and

Machine Learning techniques have been introduced to assist in this process,

making it more accessible to humans. This study examined physical signatures

written on documents and obtained from the database of Kaggle's handwritten

images www.kaggle.com/datasets/divyanshrai/handwritten-signatures.

The lack of a specific method (Kalluci et. al., 2023) for validating signatures

makes document verification unreliable, prompting studies to explore methods

to verify signatures using designated author (Oden et. al., 2003).

This study examines the easiest and most accessible method for a simple user

using a smartphone to extract signatures, focusing on image extraction.

However, the convenience of this method has introduced challenges in

removing the signature from documents, including cleaning the image from

data, which can affect the accuracy of the model.

The study proposes methods to transform images, approximate signature

shapes using B-Spline curves, save control points, and determine the

Euclidean difference between these points and those extracted from

verification signatures. Every time a signature is sent for verification, an

approximation is made, and control points are extracted based on this, which

are then compared with the control points stored in the training dataset.

The technique is restricted to verifying signatures used in the training dataset

only.

Figure 1 provides a hierarchical model illustration.

Figure 1: Handwriting Recognition Steps

We have employed the following technologies and algorithms to put this

approach into practice:

http://www.kaggle.com/datasets/divyanshrai/handwritten-signatures

132 JNS 34/2023

 Python (Programming language): Python is an ideal programming

language for sensor integration and data processing due to its speed and

simplicity. Its vast ecosystem of libraries, including OpenCV and RPLidar,

provides a wide range of tools and algorithms for image processing and

computer vision tasks. Python's cross-platform compatibility allows it to run

smoothly on different operating systems, enhancing its suitability for data

retrieval. It excels at real-time data processing when paired with specialized

libraries like NumPy and SciPy. Its interoperability with APIs is particularly

useful for cameras and LiDAR sensors.

 OpenCV: is an open-source library for computer vision tasks, offering

cross-platform compatibility across various platforms. It supports various

image and video file formats and is highly optimized in C++, enabling

efficient real-time processing. OpenCV offers filtering, edge detection, object

recognition, and more functions. It provides an intuitive API for interfacing

with cameras and benefits from a large community. The library integrates with

133 JNS 34/2023

other machine-learning libraries and frameworks, combining computer vision

with machine-learning techniques for advanced applications. Released under

a BSD license, OpenCV is a popular choice in the computer vision

community.

 SciPy: is an open-source scientific computing library for Python that

offers a variety of modules and functions for various scientific and engineering

applications. It builds on NumPy's capabilities and extends them to include

tasks like optimization, signal processing, statistical analysis, linear algebra,

integration, interpolation, linear algebra, statistics, special functions, spatial

data structures, and data visualization. SciPy is a critical component of the

scientific Python ecosystem and is often used with libraries like NumPy,

Matplotlib, and Pandas for data analysis, visualization, and scientific

computing. Its extensive feature set and user-friendly interface make it a

valuable tool for scientists and data analysts working on complex

mathematical problems in Python.

BFGS: is a local search optimization algorithm, a second-order method that

uses the second-order derivative of an objective function. It is widely used for

numerical optimization and is often used to adapt machine learning algorithms

like logistic regression.

Mathematical morphology: is a branch of image processing and computer

vision that analyzes binary images, grayscale images, and structured data. It

focuses on shapes and structures in images and has applications in fields like

image processing, computer vision, and pattern recognition. Key concepts

include binary image operations, structure elements, and operations like

dilation, erosion, opening, and closing. These operations help manipulate

binary images, modify target images, and remove small objects and noise.

Mathematical morphology is particularly useful in tasks requiring the

geometry and structure of objects in images.

The step-by-step implementation process is as follows:

1) Dataset preparation:

 First, we focused on dataset preparation, which consists of capturing

images of signatures by setting the images as part of the ID name of the author

of the signature.

 We have generated signatures similar to the original for each author by

introducing drastic changes to show that it is a forged signature.

2) Image processing:

134 JNS 34/2023

This step consists of all the transformations to extract the binary form of the

signature. This extract will be used later for approximation. Steps followed for

image processing:

 Reading the image in Gray Scale: Reading the image with the OpenCV

imread function, setting the reading mode in our case to GrayScale as a

parameter, that is, to read the image in black and white.

 Convert the image to binary form: After reading the image in Gray

Scale, we apply the conversion of the image to binary, get the values of the

pixels, and compare them with 127; if this value is less than 127, it becomes

zero; otherwise, it takes the value 255. This conversion is done so that we have

algorithm confusion. The built-in library provides this method.

 Application of skeletonization: Skeletonization aims to remove pixels

from the signature image without damaging its context. To build the B-Spline

based on this extracted signature, we will only need the skeleton of the

signature. The methodology used for signature skeletonisation is based on

mathematical morphology.

 The first step that is part of the morphology is the erosion of the image

content. This is done by removing the pixels next to the content without

breaking the original shape. This makes it possible to remove excess without

losing the context of the image. Erosion is based on a matrix with variable

sizes depending on the case where we want to use it, and it is called kernel. In

the case of the signature, the minimum size (3x3) was used, meaning we want

to remove the "neighbours" of the pixels.

 This matrix iterates over the entire image with one step through all

rows of the image matrix, checking how many pixels match the kernel. A

threshold has been set which decides to write a pixel with a value of 255 when

the size covered or reduced by the template is the total number of kernel pixels

minus 2. This limit makes it possible whether it should be marked in the image

or overwritten with the value 0.

 After erosion, dilation is applied to the image where the erosion was

used. Iteratively, this process is repeated for each output of these processes

until no more erosion can be done. The extension will return the context of the

image but in a reduced way. This transition process reduces erosion without

damaging the contents.

 This process of erosion and expansion continues until no more erosion

can be done on the original image.

3) Implementation of the "Fit" function

135 JNS 34/2023

Extracting features from the image: To approximate the B-Spline curve, we

must determine its initial control points. The feature extraction method was

examined to extract these points. The signature curve's edges, key points,

sharp bends, and intersections between curves are selected as characteristics.

In this study, the feature that extracts the contours of the signature was used.

These removed references will be used as a guide for the assignment of

checkpoints. These features determine the number of control points and,

consequently, the order of the B-Spline curve.

4) Curve Fit

The control points have been extracted, and we are in the curve approximation

step. To achieve this, the curve_fit function from the SciPy library was used.

This function assigns the control points extracted from the feature extraction.

Curve fitting is finding the best-fit curve (in this case, a Bézier curve) to a set

of data points (control points extracted from the signature).

The curve-fitting steps are:

 The objective of the curve fitting step is to adjust the parameters of a

Bézier curve so that it approximates the shape of the signature as closely as

possible.

 Input data for curve fitting includes:

 `bezier_curve` function: This function represents the Bézier curve and

is used to evaluate the curve for different parameter values.

 `t_values`: An array of `t` values ranging from 0 to 1, representing

points along the Bézier curve.

 `control_points': Various control points extracted from the signature

image.

 `guess_startup`: An initial estimate of the parameters of the Bézier

curve.

 The ̀ curve_fit` function is part of the SciPy library and is used for non-

linear curve fitting. It performs a least-squares optimization to minimize the

difference between the Bézier curve (defined by the `bezier_curve` function)

and the actual control points.

 The optimization process iteratively adjusts the parameters of the

Bézier curve to minimize the error (residuals) between the curve and the

control points. The optimization algorithm seeks to find parameter values that

result in the best possible fit to the data.

 Optimization parameters: In the `curve_fit' function, the optimization

parameters are the parameters of the Bézier curve. These parameters include

136 JNS 34/2023

the weights (multipliers) for the control points and the coordinates of the

control points.

 Initialization: The initial guess (given as `p0`) is crucial. It is an

estimate of the parameters of the Bézier curve at the beginning of the

optimization process. A reasonable initial guess helps the optimization

algorithm converge to a better solution.

 Optimization Algorithm:

 The 'curve_fit' function uses a non-linear optimization algorithm (such

as the Levenberg-Marquardt algorithm) to refine the parameter values

iteratively.

 The algorithm adjusts the parameters to minimize the sum of the

squared (least squares) differences between the Bézier curve and the control

points.

 Convergence: The optimization process continues until a stopping

criterion is met or a predetermined number of iterations is reached. The goal

is to find parameter values that minimize the error.

 Fitted parameters:

 After the optimization, the function 'curve_fit' returns the provided

parameters. These are the optimized parameter values that define the Bézier

curve.

 Output: The fitted Bézier curve, represented by the optimized

parameters, closely matches the shape of the signature. This curve can be used

for various purposes, such as signature analysis, recognition, or smoothing.

The curve fitting step essentially adjusts the Bézier curve to approximate the

shape of the signature as accurately as possible, based on the provided control

points and an initial guess.

Experimental results

We need to construct a B-Spline curve using a subset of data points obtained

from the signature images of two individuals. The B-spline curve specimen is

saved in a database. To identify the person, we can calculate the differences

between the test B-spline curves and all sample curves from the database using

Euclidean distance.

By selecting the least value among all distances, we can determine the person's

identity. Allow the software to acquire knowledge from three distinct sample

signatures belonging to three individuals. The recognition process is illustrated

in Figure 2.

137 JNS 34/2023

Figure 2 Process of recognition of the sign

The identification rate is 97%, and the verification error rate is 5%. This paper

proposes non-uniform B-Spline curves for verifying the authenticity of

signatures. B-spline curves can accurately record signature shapes, and the

point projection method provides an accurate way to estimate the difference

between two B-spline curves. The proposed technique achieves a high degree

of identification and verification. Proposed future works include a more

extensive test conducted on a database collected over some time.

Conclusions

This research focuses on confirming the legitimacy of individual signatures

using the B-Spline algorithm. The process involves comparing the test

signature to those trained using a sample, pre-processing input data, and

identifying control points. An optimization tool like BGFC is used to fit the

B-spline with the traced signature curve, aligning the traced curve's initial

guess with the signature's shape.

The final stage involves calculating the Euclidean distance between the

training samples and the test signature's control points, returning oriented

samples with the sample signature's control points and the shortest Euclidean

distance. The key feature of this method is that every reconstructed B-spline

curve from a signature has the same degree and number of control points,

reducing the inaccuracy of curve-matching.

138 JNS 34/2023

The storage of sample data affects the recognition process's speed and

accuracy. The algorithm has been tested on various signature styles and

demonstrated good accuracy, demonstrating the accuracy and resilience of the

suggested approach for matching B-spline curves.

References

Carl de Boor, (1972): On calculating with B-splines, Journal of Approximation Theory 6, 50-

62

Farin G. (1988): Curves and surfaces for computer-aided geometric design: a practical guide,

Academic Press INC, ISBN 0-12-24 9054-1.

Kalluci E., Noka E., Bani K., (2023): Optimization techniques in modeling hand calligraphy

using B-splines, Bulletin of Natural Sciences, Issue 32.

Oden C., Ercil, A., Buke B., (2003): Combining implicit polynomials and geometric features

for hand recognition, Pattern Recognition Letters, 24.

Rogers D. F. (2001): An Introduction to NURBS: With historical perspective, Academic

Press.

Schoenberg I. J. (1969): Cardinal Interpolation and Spline Functions, J. Approximation

Theory 2, 167-206.

