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Abstract 

This research article presents a novel approach for genuity checks of digital 

signatures based on B-spline curves, a mathematical representation widely 

used in computer-aided design (CAD) and graphics. The method transforms 

the signature into a mathematical representation using knots, control points, 

and curve interpolation, which is then used to develop a signature verification 

algorithm. Techniques in signature image processing and optimization 

methods, such as BGFC, are employed to address these challenges. OpenCV 

is used for signature image processing and extraction, with morphological 

mathematical methods for skeletisation. An optimization algorithm like BGFC 

is used to fit the B-spline with the traced signature curve, aligning the traced 

curve's initial guess with the signature's shape. The research uses a 

comprehensive dataset of signatures to validate the effectiveness of the 

proposed B-spline-based genuity check. Experimental results show the 

algorithm can accurately distinguish between genuine and forged signatures, 

even in the presence of distortions and noise. The computational efficiency of 

the method positions it as a practical solution for real-time signature 

authentication applications. This work contributes to digital signature 

verification by enhancing the accuracy and reliability of genuity checks, with 

potential applications in secure document management, financial 

transactions, and other digital interactions.  
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Përmbledhje  

Në këtë artikull paraqitet një metodë shumë e saktë për kontrrollinin e 

nënshkrimit dixhital duke u bazuar në sheshimin me anë të kurvave B-spline, 

një paraqitje matematikore gjerësist e përdorur në dizenjimet kompjyterike 

(CAD) dhe grafike. Metoda transformon nënshkrimin në një paraqitje 

matematikore duke përdorur nyje, pika kontrolli dhe interpolim me anë të 

kurvave të lakuara, të cilat më pas përdoren për të zhvilluar një algoritëm për 

verifikimin e nënshkrimit. Teknikat për procesimin e imazhit të nënshkrimit 

dhe metodat optimizuese, si për shembull BGFC, janë përdorur për adresuar 

këto sfida. OpenCV është përdorur për procesimin e nënshkrimit si imazh dhe 

për ekstraktimin e saj, me ndihmën e metodave të matematikës morfologjike 

për skeletizimin e problemit. Një algoritëm optimizues si BGFC përdoret për 

të përshtatur kurbën B-spline me kurbën e nënshkrimit të gjurmuar, duke 

përafruar interpolimin fillestar të kurbës me nënshkrimin origjinal. për këtë 

punim është përdorur një databazë publike me nënshkrime për të kryer 

validimin e efektshmërisë së metodës së propozuar, e cila bazohet në 

interpolimin me anë të B-spline-ve. Rezultatet eksperimentale tregojnë se 

algoritmi dallon me saktësi nënshkrimet origjinale nga ato të fallcifikara, edhe 

në prezencën e shtrembërimeve ose zhurmave. Efektshmëra llogaritës e 

metodës e pozicionon atë ndër zgjidhjet më praktike për verifikimin e 

nënshkrimit në kohë reale. Ky punim kontribuon në verikifikimin e nënshkrimit 

dixhital duke rritur saktësinë dhe besueshmërinë në kontrollet e origjinalitetit, 

me aplikime të mundshme në menaxhimin e sigurt të dokumentave, 

transaksionet financiare dhe ndërveprime të tjera dixhitale. 

Fjalë kyçe: B–Spline, AI, BGFC, skeletizim, sheshimi me vijë të lakuar, 

automatizim, nënshkrim. 

Introduction  

The B-spline curve is a powerful and versatile approach to curve design, 

addressing issues with the Bezier curve. It addresses problems with Bezier 

curves and is widely used in 3D animations to determine the path of motion 

and interpret critical segments. B-splines are also used to model animation 

characters, animated movies, and True Type fonts, providing a comprehensive 

solution to curve design challenges.  

B-spline models were first mentioned by (Schoenberg. 1969).  Initially, the 

practical application of B-spline curves and surfaces was limited by the 

instability of the algorithms for their calculation. This setback was resolved by 
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(de Boor 1972), who proposed an algorithm for numerical computation based 

on a recursive template. Then, Reisenfeld algorithm reveals that the B-spline 

is a powerful tool for representing free-form shapes and applied the B-spline 

base for curve definitions.  

B-spline curves are a powerful technique used in modelling complex shapes 

and surfaces, often used in computer modelling and graphic design 

environments like AutoCAD and Blender. These curves are divided into small, 

controllable segments, making them suitable for creating and manipulating 

various graphical objects and creating moving animations. NURBS, or Non-

Uniform Rational B-Spline, is a more common interface in 3D modelling, 

including B-spline curves and weight settings.  

This study aims to use image manipulation techniques, such as signatures, to 

examine and present signatures as binary images using Computer Vision 

technology. A dataset of signature images is prepared using a moderate 

number of signature images from firm authors, and a dataset of forged 

signatures is created to evaluate the accuracy of the model used. A computer 

model is trained for signature recognition in the signature photo dataset, and 

the model is tested using forged signature images to determine its ability to 

distinguish them from actual signatures.  

The main goal of this study is to develop an efficient and accurate tool for 

verifying the authenticity of signatures using computer technologies and 

related sciences, focusing on signature authentication and detecting forged 

signatures in security and fraud prevention contexts.  

The order of the remaining paper is as follows: Relevant research in this field 

is compiled in the following sections. The suggested algorithm is described 

and the methods utilized are defined.  

B-splines in pattern recognition  

B-Spline theory has been widely developed and is explained in detail in (de 

Boor, 1972). This section outlines the necessary elements from the theory to 

comprehend the application of B-spline in this research.  

Using standard computer-aided modeling techniques like curves and B-spline 

surfaces, geometric modeling creates and portrays free-form curves and 

surfaces.  

The B-splines can describe various forms of curves (Rogers, 2001). Bezier 

curves generalization are splines with an orthonormal basis of recursive 

functions, consisting of curves with polynomials at knot points. The degree of 
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these polynomials is identical to that of a B-spline, with cubic segments being 

an essential part of these curves.  

A spline curve is a continuous curve formed by joining a sequence of 

segments. The B-spline curve addresses the problems with the Bezier curve. 

Bezier curves are a powerful and versatile approach to curve design, used in 

3D animation to define the path of an object's movement. They are also used 

to model animation characters and fonts of various shapes, with their two-

dimensional curves used for rendering key segments and their three-

dimensional path defined by B-splines. B-spline models were first mentioned 

by Schoenberg (Schoenberg, 1969). The initial practical application of B-

spline curves and surfaces was restricted due to the instability of their 

calculation algorithms. This obstacle was solved by Cox and de [de Boor 1972], 

who proposed an algorithm for numerical calculation based on a recursive 

model. Then, using the Reisenfeld algorithm is clearly found that the B-spline 

is a powerful tool for representing free-form shapes and applied the B-spline 

basis for curve definitions. 

The B-spline's flexibility can be enhanced by increasing its order and inserting 

nodes.  

The B-spline curve's flexibility is being enhanced.  

If  Sk=[𝐵0
𝑘(𝑡) 𝐵1

𝑘(𝑡) … 𝐵𝑛
𝑘(𝑡)]T  is a B-spline basis defined in vector form, then  

 

Sk(P;t)= 𝑆𝑘
𝑇 𝑃 = ∑ 𝐵𝑖

𝑘(𝑡)𝑃𝑖
𝑛
𝑖=0   ,    𝑡 ∈ [𝑡𝑘−1, 𝑡𝑛+1) 

 

Is the B-spline curve defined by P=[𝑃0 … 𝑃𝑛]T. 

It is clear that the choice of basis functions and the choice of knot vectors 

significantly affect the shape of the B-spline curve. 

The B-spline curve maintains smoothness with increasing order, while 

subdivision reduces the variability of embedded nodes, which depends on the 

diversity of elements in the node vector. Subdivision reduces variability to 

order k-2 for node vectors with few components.  

By increasing the scale of the B-spline curve, the new curve should be 

identical to the original curve, so  

  

Sk(P;t)= ∑ 𝐵𝑖
𝑘(𝑡)𝑃𝑖

𝑛+1
𝑖=1 = ∑ 𝐵𝑖

𝑘+1(𝑡)𝑃𝑖
∗𝑛+1

𝑖=1  

 

where 𝑃𝑖
∗ are the polygon control points for the new curve.  
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The B-spline curve's scale or order can be increased to make it smoother 

compared to the control polygon. However, the presence of many internal 

elements in the node vector reduces continuity in the node's value, resulting in 

a plot close to a control polygon. This also increases the curve's flexibility by 

introducing additional elements. There are two basic methods of inserting 

nodes. The first method contains the so-called Oslo algorithm developed by 

(de Boor, 1972; Rogers. 2001) and his colleagues and the Prautzch algorithm, 

which consists of simultaneously inserting multiple elements into the node 

vector. The improved method consists of repeatedly inserting a single element 

into the vector node. Let it be an initial curve with a node vector like this:  

Sk(P;t)= ∑ 𝐵𝑖
𝑘(𝑡)𝑃𝑖

𝑛+1
𝑖=1   ,    𝜏 ∈ [𝑡1, 𝑡2, … 𝑡𝑛+𝑘+1] 

 

The new curve, which is obtained after inserting the nodes, is determined by  

 

Rk(P;s)= ∑ 𝑀𝑗
𝑘(𝑠)𝐶𝑗

𝑚+1
𝑗=1    , 𝜏∗ ∈ [𝑦1, 𝑦2, … 𝑦𝑚+𝑘+1] 

 

m>n , is the new node vector and Sk(P;t)= Rk(P;s).  

The Oslo algorithm is used to determine the new points of the control polygon.  

Cj=∑ 𝛼𝑖.𝑗
𝑘 𝑃𝑖

𝑛+1
𝑖=1               1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, 

 

Where 𝛼𝑖.𝑗
𝑘   are given by recursive relation. 

𝛼𝑖.𝑗
𝑘 = {

1          𝑡𝑖 ≤  𝑦𝑗 ≤  𝑡𝑖1

0                𝑛𝑑𝑟𝑦𝑠ℎ𝑒
     , 

 

 

𝛼𝑖.𝑗
𝑘 =

𝑦𝑗+𝑘−1−𝑡𝑖

𝑡𝑗+𝑘−1−𝑡𝑖
𝛼𝑖.𝑗

𝑘−1 +
𝑡𝑗+𝑘−𝑦𝑖+𝑘−1

𝑡𝑗+𝑘−𝑡𝑖
𝛼𝑖+1.𝑗

𝑘−1  , 

 

 

Where ∑ 𝛼𝑖.𝑗
𝑘 = 1.𝑛+1

𝑖=1  

The original knot vector, if uniform, periodic, or open, may not consistently 

produce end vector knots. A constant knot vector can be obtained by inserting 

middle knots for each non-empty interval.   
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The implementation of b-splines in signature authetification   

The signature serves as a tool for verifying document authorship and 

authenticity, a task that requires specialized techniques. Mathematical and 

Machine Learning techniques have been introduced to assist in this process, 

making it more accessible to humans. This study examined physical signatures 

written on documents and obtained from the database of Kaggle's handwritten 

images www.kaggle.com/datasets/divyanshrai/handwritten-signatures.  

The lack of a specific method (Kalluci et. al., 2023) for validating signatures 

makes document verification unreliable, prompting studies to explore methods 

to verify signatures using designated author (Oden et. al., 2003).  

This study examines the easiest and most accessible method for a simple user 

using a smartphone to extract signatures, focusing on image extraction. 

However, the convenience of this method has introduced challenges in 

removing the signature from documents, including cleaning the image from 

data, which can affect the accuracy of the model.  

The study proposes methods to transform images, approximate signature 

shapes using B-Spline curves, save control points, and determine the 

Euclidean difference between these points and those extracted from 

verification signatures. Every time a signature is sent for verification, an 

approximation is made, and control points are extracted based on this, which 

are then compared with the control points stored in the training dataset.  

The technique is restricted to verifying signatures used in the training dataset 

only.  

 

Figure 1 provides a hierarchical model illustration.  

 

Figure 1: Handwriting Recognition Steps 

We have employed the following technologies and algorithms to put this 

approach into practice:  

http://www.kaggle.com/datasets/divyanshrai/handwritten-signatures
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 Python (Programming language): Python is an ideal programming 

language for sensor integration and data processing due to its speed and 

simplicity. Its vast ecosystem of libraries, including OpenCV and RPLidar, 

provides a wide range of tools and algorithms for image processing and 

computer vision tasks. Python's cross-platform compatibility allows it to run 

smoothly on different operating systems, enhancing its suitability for data 

retrieval. It excels at real-time data processing when paired with specialized 

libraries like NumPy and SciPy. Its interoperability with APIs is particularly 

useful for cameras and LiDAR sensors. 

 OpenCV: is an open-source library for computer vision tasks, offering 

cross-platform compatibility across various platforms. It supports various 

image and video file formats and is highly optimized in C++, enabling 

efficient real-time processing. OpenCV offers filtering, edge detection, object 

recognition, and more functions. It provides an intuitive API for interfacing 

with cameras and benefits from a large community. The library integrates with 
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other machine-learning libraries and frameworks, combining computer vision 

with machine-learning techniques for advanced applications. Released under 

a BSD license, OpenCV is a popular choice in the computer vision 

community. 

 SciPy: is an open-source scientific computing library for Python that 

offers a variety of modules and functions for various scientific and engineering 

applications. It builds on NumPy's capabilities and extends them to include 

tasks like optimization, signal processing, statistical analysis, linear algebra, 

integration, interpolation, linear algebra, statistics, special functions, spatial 

data structures, and data visualization. SciPy is a critical component of the 

scientific Python ecosystem and is often used with libraries like NumPy, 

Matplotlib, and Pandas for data analysis, visualization, and scientific 

computing. Its extensive feature set and user-friendly interface make it a 

valuable tool for scientists and data analysts working on complex 

mathematical problems in Python. 

 

BFGS: is a local search optimization algorithm, a second-order method that 

uses the second-order derivative of an objective function. It is widely used for 

numerical optimization and is often used to adapt machine learning algorithms 

like logistic regression. 

 

Mathematical morphology: is a branch of image processing and computer 

vision that analyzes binary images, grayscale images, and structured data. It 

focuses on shapes and structures in images and has applications in fields like 

image processing, computer vision, and pattern recognition. Key concepts 

include binary image operations, structure elements, and operations like 

dilation, erosion, opening, and closing. These operations help manipulate 

binary images, modify target images, and remove small objects and noise. 

Mathematical morphology is particularly useful in tasks requiring the 

geometry and structure of objects in images. 

The step-by-step implementation process is as follows:  

1) Dataset preparation:  

 First, we focused on dataset preparation, which consists of capturing 

images of signatures by setting the images as part of the ID name of the author 

of the signature.  

 We have generated signatures similar to the original for each author by 

introducing drastic changes to show that it is a forged signature.  

2) Image processing: 
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This step consists of all the transformations to extract the binary form of the 

signature. This extract will be used later for approximation. Steps followed for 

image processing: 

 Reading the image in Gray Scale: Reading the image with the OpenCV 

imread function, setting the reading mode in our case to GrayScale as a 

parameter, that is, to read the image in black and white.  

 Convert the image to binary form: After reading the image in Gray 

Scale, we apply the conversion of the image to binary, get the values of the 

pixels, and compare them with 127; if this value is less than 127, it becomes 

zero; otherwise, it takes the value 255. This conversion is done so that we have 

algorithm confusion. The built-in library provides this method. 

 Application of skeletonization: Skeletonization aims to remove pixels 

from the signature image without damaging its context. To build the B-Spline 

based on this extracted signature, we will only need the skeleton of the 

signature. The methodology used for signature skeletonisation is based on 

mathematical morphology.  

 The first step that is part of the morphology is the erosion of the image 

content. This is done by removing the pixels next to the content without 

breaking the original shape. This makes it possible to remove excess without 

losing the context of the image. Erosion is based on a matrix with variable 

sizes depending on the case where we want to use it, and it is called kernel. In 

the case of the signature, the minimum size (3x3) was used, meaning we want 

to remove the "neighbours" of the pixels.  

 This matrix iterates over the entire image with one step through all 

rows of the image matrix, checking how many pixels match the kernel. A 

threshold has been set which decides to write a pixel with a value of 255 when 

the size covered or reduced by the template is the total number of kernel pixels 

minus 2. This limit makes it possible whether it should be marked in the image 

or overwritten with the value 0.  

 After erosion, dilation is applied to the image where the erosion was 

used. Iteratively, this process is repeated for each output of these processes 

until no more erosion can be done. The extension will return the context of the 

image but in a reduced way. This transition process reduces erosion without 

damaging the contents.  

 This process of erosion and expansion continues until no more erosion 

can be done on the original image.  

3) Implementation of the "Fit" function  
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Extracting features from the image: To approximate the B-Spline curve, we 

must determine its initial control points. The feature extraction method was 

examined to extract these points. The signature curve's edges, key points, 

sharp bends, and intersections between curves are selected as characteristics. 

In this study, the feature that extracts the contours of the signature was used. 

These removed references will be used as a guide for the assignment of 

checkpoints. These features determine the number of control points and, 

consequently, the order of the B-Spline curve.  

4) Curve Fit  

The control points have been extracted, and we are in the curve approximation 

step. To achieve this, the curve_fit function from the SciPy library was used. 

This function assigns the control points extracted from the feature extraction. 

Curve fitting is finding the best-fit curve (in this case, a Bézier curve) to a set 

of data points (control points extracted from the signature).  

The curve-fitting steps are:  

 The objective of the curve fitting step is to adjust the parameters of a 

Bézier curve so that it approximates the shape of the signature as closely as 

possible.  

 Input data for curve fitting includes: 

 `bezier_curve` function: This function represents the Bézier curve and 

is used to evaluate the curve for different parameter values. 

 `t_values`: An array of `t` values ranging from 0 to 1, representing 

points along the Bézier curve. 

 `control_points': Various control points extracted from the signature 

image. 

 `guess_startup`: An initial estimate of the parameters of the Bézier 

curve.  

 The ̀ curve_fit` function is part of the SciPy library and is used for non-

linear curve fitting. It performs a least-squares optimization to minimize the 

difference between the Bézier curve (defined by the `bezier_curve` function) 

and the actual control points.  

 The optimization process iteratively adjusts the parameters of the 

Bézier curve to minimize the error (residuals) between the curve and the 

control points. The optimization algorithm seeks to find parameter values that 

result in the best possible fit to the data.  

 Optimization parameters: In the `curve_fit' function, the optimization 

parameters are the parameters of the Bézier curve. These parameters include 
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the weights (multipliers) for the control points and the coordinates of the 

control points.  

 Initialization: The initial guess (given as `p0`) is crucial. It is an 

estimate of the parameters of the Bézier curve at the beginning of the 

optimization process. A reasonable initial guess helps the optimization 

algorithm converge to a better solution.  

 Optimization Algorithm:  

 The 'curve_fit' function uses a non-linear optimization algorithm (such 

as the Levenberg-Marquardt algorithm) to refine the parameter values 

iteratively. 

 The algorithm adjusts the parameters to minimize the sum of the 

squared (least squares) differences between the Bézier curve and the control 

points.  

 Convergence: The optimization process continues until a stopping 

criterion is met or a predetermined number of iterations is reached. The goal 

is to find parameter values that minimize the error.  

 Fitted parameters:  

 After the optimization, the function 'curve_fit' returns the provided 

parameters. These are the optimized parameter values that define the Bézier 

curve.  

 Output: The fitted Bézier curve, represented by the optimized 

parameters, closely matches the shape of the signature. This curve can be used 

for various purposes, such as signature analysis, recognition, or smoothing.  

The curve fitting step essentially adjusts the Bézier curve to approximate the 

shape of the signature as accurately as possible, based on the provided control 

points and an initial guess.  

Experimental results  

We need to construct a B-Spline curve using a subset of data points obtained 

from the signature images of two individuals. The B-spline curve specimen is 

saved in a database. To identify the person, we can calculate the differences 

between the test B-spline curves and all sample curves from the database using 

Euclidean distance.  

By selecting the least value among all distances, we can determine the person's 

identity. Allow the software to acquire knowledge from three distinct sample 

signatures belonging to three individuals. The recognition process is illustrated 

in Figure 2. 
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Figure 2 Process of recognition of the sign 

 

The identification rate is 97%, and the verification error rate is 5%. This paper 

proposes non-uniform B-Spline curves for verifying the authenticity of 

signatures. B-spline curves can accurately record signature shapes, and the 

point projection method provides an accurate way to estimate the difference 

between two B-spline curves. The proposed technique achieves a high degree 

of identification and verification. Proposed future works include a more 

extensive test conducted on a database collected over some time.  

Conclusions  

This research focuses on confirming the legitimacy of individual signatures 

using the B-Spline algorithm. The process involves comparing the test 

signature to those trained using a sample, pre-processing input data, and 

identifying control points. An optimization tool like BGFC is used to fit the 

B-spline with the traced signature curve, aligning the traced curve's initial 

guess with the signature's shape.  

The final stage involves calculating the Euclidean distance between the 

training samples and the test signature's control points, returning oriented 

samples with the sample signature's control points and the shortest Euclidean 

distance. The key feature of this method is that every reconstructed B-spline 

curve from a signature has the same degree and number of control points, 

reducing the inaccuracy of curve-matching.  
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The storage of sample data affects the recognition process's speed and 

accuracy. The algorithm has been tested on various signature styles and 

demonstrated good accuracy, demonstrating the accuracy and resilience of the 

suggested approach for matching B-spline curves.  

 

References  

Carl de Boor, (1972): On calculating with B-splines, Journal of Approximation Theory 6, 50-

62  

Farin G. (1988): Curves and surfaces for computer-aided geometric design: a practical guide, 

Academic Press INC, ISBN 0-12-24 9054-1. 

Kalluci E., Noka E., Bani K., (2023): Optimization techniques in modeling hand calligraphy 

using B-splines, Bulletin of Natural Sciences, Issue 32. 

Oden C., Ercil, A., Buke B., (2003): Combining implicit polynomials and geometric features 

for hand recognition, Pattern Recognition Letters, 24.  

Rogers D. F. (2001): An Introduction to NURBS: With historical perspective, Academic 

Press. 

Schoenberg I. J. (1969): Cardinal Interpolation and Spline Functions, J. Approximation 

Theory 2, 167-206. 


