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Abstract 

Classification of ortho-imagery is a fundamental task in remote sensing 

applications, aiding in land cover analysis, urban planning, and 

environmental monitoring. In this article, we evaluate the performance of 

various classification algorithms in ArcGIS for five distinct land cover classes, 

using both Visible and InfraRed bands. The evaluated algorithms include 

Maximum Likelihood, K-Nearest Neighbors, Random Trees, and Support 

Vector Machine. In addition, this article will further focus on the performance 

of the Random Trees algorithm, particularly examining its utilization of 

entropy. Ortho-imagery datasets were acquired and preprocessed to ensure 

consistency and accuracy across all tests. Each classification algorithm was 

trained and tested using the same dataset and performance metrics such as 

overall accuracy, kappa coefficient, precision, recall and F1-score. Results 

reveal notable variations in classification accuracy among the algorithms 

tested, on both bands. For the visible band, Random Trees algorithm emerged 

with the best performance, followed by the Support Vector Machine algorithm. 

In contrast, for the infrared band, the Support Vector Machine algorithm 

exhibited the highest accuracy among the classifiers studied, closely followed 

by Maximum Likelihood algorithm. These findings provide valuable insights 

in remote sensing applications, aiding in the selection of appropriate 

classification algorithms for ortho-imagery analysis across multiple spectral 

bands. 

Key words: Raster classification, Maximum Likelihood, K-Nearest Neighbors, 

Random Trees, Support Vector Machine, Entropy. 
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Përmbledhje 

Klasifikimi i ortoimazherisë është një detyrë parësore e aplikacioneve të 

detektimit në distancë, e cila ndihmon analizën e kategorizimit të terrenit, 

planifikimin urban dhe monitorimin e ambientit. Në këtë artikull, vlerësohet 

performanca e algoritmeve të ndryshme klasifikues në ArcGIS për pesë klasa 

të ndryshme të kategorizimit të terrenit, duke përdorur dy banda, atë të 

dukshmen dhe atë Infra-të-kuqe. Algoritmet e vlerësuara përfshijnë Maximum 

Likelihood, K-Nearest Neighbors, Random Trees dhe Support Vector 

Machine. Përveç kësaj, ky artikull do të përqendrohet më tej në performancën 

e algoritmit Random Trees, duke ekzaminuar veçanërisht përdorimin e 

entropisë. Për të siguruar një konsistencë dhe saktësi në të gjitha testet, setet 

e të dhënave për ortoimazherinë u përftuan dhe u para-procesuan. Çdo 

algoritëm klasifikimi është trajnuar dhe testuar duke përdorur të njëjtin set të 

dhënash dhe metrika performance si overall accuracy, kappa coefficient, 

precision, recall dhe F1-score. Rezultatet treguan ndryshime të dukshme në 

saktësinë e klasifikimit ndërmjet algoritmeve të testuara, kjo për të dy bandat. 

Për bandën e dukshme, algoritmi Random Trees doli me performancën më të 

mirë, ndjekur nga algoritmi Support Vector Machine. Nga ana tjetër, për 

bandën infra-të-kuqe, algoritmi Support Vector Machine tregoi saktësinë më 

të lartë midis klasifikuesve të studiuar, i ndjekur afër nga algoritmi i Maximum 

Likelihood. Këto gjetje ofrojnë njohuri të vlefshme në aplikacionet e detektimit 

në distancë, duke ndihmuar në zgjedhjen e algoritmeve të përshtatshme të 

klasifikimit për analiza ortoimazherie përmes shumë bandave spektrale. 

Fjalë kyçe: Klasifikim Raster, Maximum Likelihood, K-Nearest Neighbors, 

Random Trees, Support Vector Machine, Entropi. 

1. Introduction 

Remote sensing technologies have revolutionized the way we perceive and 

analyze our environment, offering insights into land cover dynamics, urban 

planning, and environmental monitoring. Central to these applications is the 

classification of ortho-imagery, a fundamental task that involves categorizing 

pixels into distinct land cover classes. By leveraging the spectral information 

captured by various bands, classification algorithms play a crucial role in 

extracting meaningful information from imagery datasets. 

This research evaluates the performance of several classification algorithms 
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within ArcGIS Pro, focusing on ortho-imagery datasets of Tirana, the capital 

city of Albania. With its diverse landscape encompassing urban areas, water 

bodies, agricultural lands, and natural vegetation, Tirana serves as an excellent 

study area for assessing the effectiveness of classification techniques. 

This study explores the performance of four classification algorithms: 

Maximum Likelihood, K-Nearest Neighbors, Random Trees, and Support 

Vector Machine. These algorithms are evaluated using both Visible and 

Infrared bands of Sentinel-2 and World Imagery satellites, ensuring a 

comprehensive analysis across different spectral ranges. 

The research methodology involves acquiring and preprocessing ortho-

imagery datasets to ensure consistency and accuracy across all tests. Each 

classification algorithm is trained and tested using the same dataset, and 

performance metrics such as overall accuracy, kappa coefficient, precision, 

recall, and F1-score are employed to assess their effectiveness. 

The study explores further the performance of the Random Trees algorithm, 

specifically examining its use of entropy as a criterion for decision-making. 

By understanding how different algorithms take advantage of spectral and 

spatial patterns for classification, this article aims to provide valuable 

information for remote sensing applications and aid in the selection of 

appropriate algorithms for ortho-imagery analysis. 

Through this research, we seek to contribute to the advancement of remote 

sensing techniques, facilitating more accurate and efficient land cover 

analysis, urban planning, and environmental monitoring efforts in diverse 

geographical contexts. 

2. Data 

2.1 Area 

The focus of this article is on Tirana, the capital city of Albania. Situated in 

the central part of Albania, Tirana is bordered to the north by the cities of Vore, 

Kamez, Kruje, and Klos; to the west by Shijak, Durres, and Kavaje; to the 

south by Rrogozhine, Peqin, and Elbasan; and to the east by Librazhd and 

Bulqize. 

In terms of administrative and territorial divisions, the Tirana County includes 

the municipalities of Tirana, Kamez, Kavaje, Rrogozhine, and Vore. This 
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article specifically focuses on the municipality of Tirana, which consists of a 

total of 27 Administrative Units: 1–11, District 12–14, Baldushk, Bërzhitë, 

Dajt, Farkë, Kashar, Krrabë, Ndroq, Petrelë, Pezë, Shëngjergj, Vaqarr, Zall–

Bastar, and Zall–Herr. 

Situated at an average altitude of 110 meters above sea level, Tirana is 

delimited by its flat area to the north-northwest, by mountainous regions to the 

north-east and east, where the highest point of 1,828 meters (Mali me Gropa) 

is located, and by hilly terrain to the south, southwest, and west. 

In terms of area, Tirana covers 1,120 km2, with Shëngjergj being the largest 

Administrative Unit (208.5 km2) and Nr. 10 the smallest (0.77 km2). 

2.2 Satellite Imagery 

Aerial and satellite imagery, which constitutes a fundamental data source for 

Geographic Information Systems, refers to data captured from a distance, 

commonly acquired through satellite or aerial platforms. These images serve 

as a rich source of spatial data, offering advantages such as extensive 

coverage, extended spectral bands, and the potential for geometric accuracy 

through advanced correction techniques. 

The acquired imagery for processing originates from a satellite source, with 

the following specifications: 

- Sentinel-2 L2A: Sentinel-2 supplies data to Copernicus services and is 

equipped with a variety of technologies including multi-spectral imaging 

instruments for land, ocean, and atmospheric surveillance. It gives high-

resolution imagery essential for land monitoring, emergency response, and 

security operations. 

The resolution chosen for the images from this satellite is 10 m; Sensor 

MultiSpectral Instrument, with 13 bands1, where for this study B4 (red, 665 

nm), B3 (green, 560 nm) and B2 (blue, 490 nm) have been chosen as 

processing templates for Visual Band, and B8 (near-infra red, 842 nm), B4 

and B3 for infrared band. For better comparison, both images from this 

satellite are dated 03.10.2023. 

The coordinate system for all acquired images is ETRS 1989 Albania 2010. 

                                                           
1 https://docs.sentinel-hub.com/api/latest/data/sentinel-2-l2a/ 
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2.3 Models 

Vector 

The vector model is one of the primary models for representing and 

manipulating geographic data. In this model, geographic data is portrayed as 

geometric entities known as vectors, composed of points, lines and polygons. 

These vectors can be precisely described and modified to align with various 

geographic application requirements. The vector model is used in numerous 

functionalities including spatial analysis, and data visualization, making it a 

crucial option for a multitude of GIS applications. 

The entities used in this article are polygons, which represent the 

administrative units of Tirana, as shown in Figure 1. In total, there are 27 

polygons that include the entirety of the Tirana municipality, which will also 

be the focus of this study. 

 

Figure 1: Vector layer of the 27 Administrative Units of Tirana. 

Raster 

Orthophoto technology, manned or unmanned, utilizes sophisticated digital 
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processing to rectify aerial photographs like satellite or drone imagery, 

removing distortions caused by terrain relief, camera tilt, and lens distortion 

(Bolstad, 2016). By aligning the images to a uniform scale, orthophotos offer 

a seamless, geometrically accurate depiction of an area’s topography, allowing 

for precise measurements and analysis. 

Orthophotos rely on raster model, which consists of a grid of cells or pixels, 

each containing specific information about the terrain, land cover, and other 

features. Raster data forms the foundation for generating orthophotos, as it 

captures the details of an area’s landscape with low, medium, or high 

resolution. Through raster analysis, orthophotos can be enhanced and 

manipulated to extract valuable insights about meteorology, land use land 

cover (LULC), agriculture, wildlife, infrastructure, disaster management, and 

even epidemic emergencies (Shahbazi et al., 2014). 

The rasterization of Tirana's zones presents a mosaic-like structure, resulting 

from the amalgamation of raster data from all its administrative units, where 

each administrative unit is clipped based on the vector layer mentioned in the 

previous point. Two final orthophotos will be generated using the same 

method: one captured in the visual band and the other in the infrared band. 

This dual approach allows for comprehensive analysis across different spectral 

ranges. 

The study area for Tirana, representing the final image upon which the study 

will be based, will be smaller in both cases compared to the final raster, given 

that the raster model forms a rectangular grid of rows and columns (Bugya & 

Farkas, 2018). 
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Figure 2: Visual Band raster of the study area. 

 

Figure 3: Infrared band raster of the study area. 
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2.4 Classes 

One of the essential aspects of machine learning classifiers is the class, which 

is the output category of the classification. In this study, five major classes 

have been chosen for the study area, each representing distinct categories 

within a given dataset. With the aim of achieving a consistent environment for 

the comparison of classifiers for the area of Tirana, the same classes have been 

selected for both visual and infrared bands: 

- Water: water bodies, which in the study area and resolution of the 

image consist of lakes and rivers. 

- Developed: areas built by human activities, like residential, 

commercial, and industrial. 

- Green: natural areas or areas covered by vegetation, which mainly 

include forests, grasslands, woodlands, and parks. 

- Barren: areas which lack significant vegetation and contain very 

limited biodiversity, such as bare rocks, gravel, or soil. 

- Agriculture: areas designated for farming or crops’ cultivation. 

 

 

2.5 Datasets 

Classifiers, a particular type of machine learning algorithm, depend on 

datasets for training, testing, and performance evaluation. The best results are 

achieved through the use of balanced training and testing datasets (Wei & 

Dunbrack, 2013), which serve as the basis for teaching classifiers to recognize 

and classify data into categories. Selecting the right dataset is essential to 

ensure that classifiers develop effective and valuable models for their purpose. 

For the training set of both the visual and infrared bands, efforts have been 

made to approximately capture the same surface area, aiming for a better 

comparison. The approximations of surface area for each class are detailed in 

Table 1. 

The test set is composed of the whole map of Tirana, giving a total area of 

1,120.9 km2, or 11,209,000 pixels for classification. 
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Class No. of pixels Area (km2) 

Water 9,700 0.97 

Developed 33,000 3.30 

Green 54,000 5.40 

Barren 54,000 5.40 

Agriculture 57,000 5.70 

TOTAL 207,700 20.77 

Table 1: Number of pixels and area for each class included in the training set 

for the entire area of Tirana. 

 

Figure 4: A map showing the distribution of training samples for both 

Visual and Infrared bands. 

3. Classifiers 

The objective of image classification is to categorize pixels into LULC classes 

using either spectral or spatial patterns. Spectral pattern recognition groups 

pixels based on spectral reflectance and classifies them individually, while 
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spatial pattern recognition considers spatial relationships with surrounding 

pixels, like texture, proximity, and context (Lillesand et al., 2015). 

Spectrally oriented procedures, like supervised classification, involve 

specifying groups of pixels with spectral attributes for LULC classes, a 

process called training. Then, other untrained pixels are compared to these 

values, thus creating the classification process. The output of the classification 

includes thematic maps, statistical tables, and digital files for GIS integration. 

Whereas unsupervised classification begins with classifying image data into 

spectral clusters without prior training. Then, LULC classes are identified by 

comparing these clusters to ground reference data. 

The concept of using unsupervised training areas to aid in identifying spectral 

classes for supervised classification, selected to represent diverse land cover 

types across the map, gives rise to a third type of procedure: hybrid 

classification. 

The above approaches can be combined in hybrid modes, such as object-based 

image analysis, where both spectral and spatial pattern recognition are used. 

In this study, our focus lies on supervised classification, where we elaborate, 

use, and compare four classifiers available in ArcGIS Pro. 

3.1 Maximum Likelihood 

Maximum Likelihood Classifier (MLC) is a parametric method used in 

machine learning to classify data based on the likelihood of each class, given 

observed data. It involves collecting data, modeling its probability distribution 

for each category, calculating likelihoods, and assigning data to the category 

with the highest likelihood. It is presented by Equation 1, based on the 

Bayesian estimation: 

𝑃(𝐻𝑖|𝐷) =  
𝑃(𝐻𝑖) ∙ 𝑃(𝐷|𝐻𝑖)

∑ 𝑃(𝐻𝑖) ∙ 𝑃(𝐷|𝐻𝑖)𝑖
       (1) 

where: 𝑃(𝐻𝑖|𝐷) the probability of a true hypothesis H with given data D, also 

called posterior probability; 𝑃(𝐻𝑖) the probability of a true hypothesis before 

seeing the data, also called prior probability; 𝑃(𝐷|𝐻𝑖) the probability of seeing 

the data D with a true hypothesis. 

This classifier uses ellipses to represent the probability distribution of various 
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classes, especially when using multivariate data. These ellipsoids are defined 

by the mean vectors and variance-covariance matrices of individual classes 

(Kavzoglu & Reis, 2008). Concentric ellipses centered on each class's mean 

vector are used to assess the likelihood probabilities of pixels for 

classification, and when new data points arrive, their likelihood of belonging 

to each class is evaluated based on how well they fit into the ellipses. 

One disadvantage of MLC classification is the significant computational load 

needed to classify each pixel, especially when dealing with numerous spectral 

channels, so differentiating many spectral classes. But with the recent 

advancements in computational power, this drawback is now less of a concern 

for most applications (Lillesand et al., 2015). Another challenge that MLC 

faces is the distinction between probability distributions. When distributions 

are not clearly distinguished from each other, they tend to overlap, thus 

making it unclear which distribution corresponds to which class (Susaki & 

Shibasaki, 2000). 

Despite its limitations, MLC is extensively used in classification tasks, 

particularly in scenarios where classes exhibit a Gaussian probability 

distribution, which renders it an optimal choice for classification (Tso & 

Mather, 2001). 

Aside these drawbacks, MLC is widely used in classification, mostly when 

there is a Gaussian probability distribution of classes, which makes it an 

optimal classifier. 

3.2 K-Nearest Neighbors 

K-Nearest Neighbor (KNN) is a machine-learning method for regression and 

classification. It finds the 𝑘 closest points (neighbors) to a given instance, 

based on a distance metric (Mitchell, 1997). The resulting equation using the 

standard Euclidian distance is: 

𝑑(𝑥, 𝑦) =  √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

       (2) 

where: 𝑥 and 𝑦 are instances and 𝑖 is the instance’s attribute. 

KNN is a non-parametric classification method that operates on the principle 
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of proximity. It finds the distance between a target instance and its nearest 

neighbors based on the specified value of 𝑘. The classification decision is then 

made based on the majority vote of these 𝑘 neighboring instances (Avand et 

al., 2019). 

KNN operates effectively with both discrete and continuous data types. It 

computes distances, such as Hamming distance, between instances for discrete 

data, while employing metrics like Euclidean, Manhattan, or Minkowski 

distances for continuous data. These distances are utilized to assign class 

labels or numerical values, facilitating the classification process. However, it's 

crucial to preprocess the data adequately to ensure that the algorithm can 

effectively handle the diverse nature of the data types involved. 

Regardless of its popularity and simplicity in implementation, KNN method 

can display some issues. A main problem with KNN is the selection of 𝑘; if it 

is excessively large, there is a risk of including irrelevant data as nearest 

neighbors and ignoring minorities; if 𝑘 is too small, it may fail to yield 

accurate results (Agrawal, 2014). Another prevalent issue encountered in 

practical applications of KNN is the uneven distribution of data across classes, 

leading to a bias towards the majority class, irrespective of distance 

measurements (Sun & Huang, 2010). 

 

3.3 Random Trees 

Random Trees (RT) is a classification method that uses the Random Forest 

(RF) algorithm (Breiman, 2001). RF is an ensemble learning method that 

constructs multiple decision trees during training and aggregates their outputs 

to make predictions. Each decision tree is built based on a subset of the training 

data and a random subset of features selected at each node. This randomness 

helps ensure diversity among the individual trees. The decision tree in itself, 

is a recursive supervised learning technique extensively applied in both 

classification and regression tasks. Unlike single-step methods, the decision 

tree adopts a hierarchical strategy to systematically explore, classify, and 

render decisions (Ulqinaku & Ktona, 2023). The goal of decision tree is to 

maximize Information Gain at each split (Quinlan, 1986), and it achieves this 

by using the concept of Entropy, more specifically Shannon’s entropy, 

expressed by the equation: 
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𝐻𝑖 = - ∑ p
i
∙ log(p

i
)

n

i=1

          (3) 

where 𝑙𝑜𝑔 ≡ 𝑙𝑜𝑔2, 𝑛 is the number of system’s different states and p
i
 is the 

probability of event i. The connection between Information Gain and Entropy 

is shown in the equation: 

𝐼𝐺(𝑇𝐴, 𝑆𝐴) = 𝐻(𝑇𝐴) −  ∑
𝑇𝐴𝑣

𝑇𝐴
∙ 𝐻(𝑇𝐴𝑣)

𝑣∈𝑆𝐴

          (4) 

where, 𝐻 is the entropy, 𝑇𝐴 represents the target attribute, while 𝑆𝐴 is the 

supporting attribute, and 𝑇𝐴𝑣 denotes a subset of 𝑇𝐴 where 𝑆𝐴 attribute takes 

on the value 𝑣. Entropy, a measure of randomness or disorder in a dataset, is 

commonly used as a criterion to quantify the randomness of the data before 

and after a split. Information gain, on the other hand, measures the reduction 

in entropy achieved by splitting the data on a specific attribute. 

As in other models, each tree in the RT model is trained on a sample of training 

data. For classification tasks, predictions are made by majority vote of the 

trees, while for regression tasks, the average output of the trees is used. RT 

builds multiple decision trees, each trained on a random subset of the training 

data, a process called bagging, and considering only a random subset of 

features for splitting. The use of bagging methods, compared to employing 

single classifiers like decision trees, resulted in higher accuracy while also 

reducing classification variance, but it had minimal impact on classification 

bias (Belgiu & Drăguţ, 2016). 

According to (Belgiu & Drăguţ, 2016), RT classifiers can be susceptible to 

several disadvantages such as: struggling with imbalanced training data, 

leading them to favor the most representative classes and potentially causing 

biased classifications; sensitivity to spatial autocorrelation within the training 

classes, which implies that the spatial distribution of training samples may 

influence the classifier's performance; the frequent need for large number of 

training samples (Kulkarni & Sinha, 2013), which may not always be feasible 

to obtain, particularly in situations where collecting extensive training data is 

difficult or resource-intensive. 

RT is applied in banking to identify loyal customers, detect fraud, and assess 
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profitability; in medicine for diagnosing diseases through patient record 

analysis; in the stock market for predicting profits or losses from stock 

behavior; and in e-commerce for customer segmentation based on purchase 

patterns (Shaik & Srinivasan, 2019). 

3.4 Support Vector Machine 

Support Vector Machine (SVM) represents an advanced form of supervised 

learning, based on the principles of statistical learning theory (Vapnik, 1995). 

In classification tasks, SVM functions by identifying a hyperplane within the 

input space. The fundamental strategy in SVM is to find a hyperplane that 

achieves the best possible separation between classes. According to Kavzoglu 

& Colkesen (2009), there are multiple hyperplanes that can be used to separate 

two classes. Yet, among them, only one hyperplane has the ability to maximize 

the margin between these classes. This special hyperplane, known as the 

optimum hyperplane, is crucial in discerning the boundary with the greatest 

distance from the data points of each class. The data points that significantly 

influence the width of this margin are referred to as support vectors. 

If we consider a binary classification scenario with two classes, the hyperplane 

is mathematically represented by: 

𝑤 ∙ 𝑥𝑖 + 𝑏 = 0       (5) 

where 𝑤 represents the weight vector, which perpendicular to the hyperplane 

and determines its orientation; 𝑥𝑖 is a feature vector containing 𝑖 features; and 

𝑏 is the bias, indicating the distance of the hyperplane from the origin. If the 

left part of the equation gives a negative result, it indicates that the data points 

belong to one class, and if the result is positive, the data points belong to a 

different class. In real-world scenarios, linearly separating classes may not 

always be feasible. In such cases, SVM uses a Kernel function, which maps 

the data points into a higher-dimensional space where linear separation 

becomes possible (Oommen et al., 2008). In this case, the equation of the 

hyperplane becomes: 

𝑤 ∙ Φ(𝑥𝑖) + 𝑏 = 0       (6) 

where Φ(𝑥𝑖) is the kernel function. 

Despite its ability to handle complex classification tasks through kernel 

functions, SVM also exhibits certain issues. The main one lies in their 
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excessive computational cost, particularly when dealing with large datasets. 

This is attributed to the quadratic growth involved in determining the optimal 

hyperplane, demanding substantial computational resources and memory.  

According to Mountrakis et al. (2011), SVM displays other limitation such as: 

the selection of kernel functions, where choosing a small kernel width 

parameter may result in overfitting, while large values may lead to over-

smoothing; inadequacy for handling noisy data commonly encountered in 

remotely sensed data due to factors like measurement errors and atmospheric 

distortions; and lastly, the effectiveness of an SVM classifier can significantly 

diminish even with just a few mislabeled examples. 

Even with their limitations, SVM have been employed to address numerous 

real-world issues such as (Cervantes et al, 2020): image classification, text 

categorization, bioinformatics, hand-written character recognition, face 

detection, and other complex classification problems. 

4. Methodology 

4.1 Workflow 

After identifying the areas to be used for the study, they were located and 

obtained from imagery providers, then integrated into ArcGIS Pro. The images 

were processed both in terms of geographical extent and raster layer 

parameters. Additionally, a geographic database was established.  

Subsequently, a classification scheme was developed, outlining the categories 

to be addressed, along with training samples for each category. The next step 

involved classification using the four classifiers provided by ArcGIS Pro. 

Following classification, the attributes of each resulting layer were processed 

to obtain meaningful data such as the number of pixels for each category and 

the respective area.  

Following that, a layer of accuracy points was created, where 200 such points 

were taken for each classified layer, based on manually performed ground 

truthing. Using the accuracy points as a basis, a confusion matrix was 

generated to compare the outputs of the classifiers, based on accuracy and 

performance metrics mentioned in section 4.3. 
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Figure 5: Methodology workflow of the study. 
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4.2 Classifiers’ parameters 

To enhance the classification output of each classifier, it is essential to tailor 

the parameters according to the desired outcomes. It is important to note that 

the parameters for each classifier were adjusted using a trial-and-error 

approach until satisfactory results were obtained. The parameters configured 

for each classification are as follows: 

- For ML classifier, no input parameter configuration is required as it 

does not possess any. 

- For KNN classification, two parameters were set: K-Nearest Neighbor: 

5, and Maximum Number of Samples per Class: 100. 

- For Random Trees, three parameters were set: Maximum Number of 

Trees: 50, Maximum Tree Depth: 30, and Maximum Number of Samples per 

Class: 100. 

- In the case of SVM classifier, only one parameter can be set, which is 

Maximum Number of Samples per Class: 100. 

 

4.3 Accuracy and performance metrics 

As already mentioned in section 4.1, for each classified layer, another layer of 

accuracy points was created, as shown in Figure 6. It was created using 

“Accuracy assessment points” tool, which generates a set of random points 

and assigns them a class based on already classified data.  

The sampling strategy for these points was “Stratified random”, where points 

were created randomly within each class, with the number of points in each 

class being proportional to its relative area. This ensures that the distribution 

of samples is representative and minimizes biases. 
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Figure 6: Distribution of accuracy points for each classification. 

The confusion matrix created has four components: 𝑇𝑃 – true positive, 𝑇𝑁 – 

true negative, 𝐹𝑃 – false positive, and 𝐹𝑁 – false negative. The performance 

metrics, derived from the confusion matrix, and used in this study were: 

- Overall accuracy: represents the ratio of correctly classified instances 

– 𝑇𝑃 and 𝑇𝑁 – to the total number of instances, as shown in the equation 7: 

𝑂𝐴 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
       (7) 

- Kappa: assesses the agreement between predicted classifications and 

true values, and is expressed by equation 8: 

𝑘 =  
𝑂𝐴 − 𝑅𝐴

1 − 𝑅𝐴
       (8) 

where 𝑅𝐴 is the random accuracy. 

- Precision: derived from the confusion matrix, precision measures the 

ratio of true positive classified instances among all positive classified 

instances. Its equation 9 is as follows: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
       (9) 

- Recall: measures the proportion of true positive classified instances, 

among all actual positive instances, and its equation 10 is: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
       (10) 

- F1-Score: provides a balanced measure between precision and recall, 

and is expressed by the equation 11: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
       (11) 

 

Results 

The classification of Tirana's zones is conducted using the four methods 

outlined in Section 3, with the outcomes presented in the classified maps 

below. 

Figure 7 shows that the ML classifier performs well in the visual band overall, 

but it tends to incorrectly classify water bodies, leading to numerous false 

positives. In the infrared band (Figure 8), this misclassification improves 

significantly; however, there is a notable issue with false positives in areas 

classified as Developed instead of Barren lands. 

Similar to the ML classifier, the KNN method also encountered challenges 

with water bodies. However, rather than producing false positives, it resulted 

in false negatives. This means that many water bodies were incorrectly 

classified as a different class, indicating significant difficulties for this 

classifier in accurately identifying water (Figure 9 and Figure 10). 

Among the four classifiers, Random Trees (RT) yielded the most accurate 

results in classifying the five classes. Like the other classifiers, it encountered 

challenges, particularly with identifying water bodies (Figure 11). While 

Figure 12 demonstrates some improvement in the infrared band, these issues 

persisted to some extent. 

The SVM classifier continues to struggle with identifying water bodies, 

resulting in false positive outcomes, although it shows slight improvement in 

the infrared band. Additionally, it misclassifies barren land as agriculture in 
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the visual band (see Figure 13) and as developed in the infrared band (see 

Figure 14). 

 

 

 

 

Figure 7: ML classification output in visual band 
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                   Figure 8: ML classification output in infrared band 

 

Figure 9: KNN classification output in visual band 
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       Figure 10: KNN classification output in infrared band 

 

Figure 11: RT classification output in visual band 
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Figure 12: RT classification output in infrared ban 
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Figure 13: SVM classification output in visual band 

 

 

Figure 14: SVM classification output in infrared band
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Table 2 and Table 3 present the area covered by each class for every 

classification method, both in the visual and infrared bands. As mentioned 

earlier, classifiers faced a significant challenge in detecting water in the visual 

band, leading to inflated numbers in Table 2, showing more area covered by 

water bodies than actually exists. In contrast, the numbers in Table 3 for the 

infrared band are more accurate. This is because water absorbs most of the 

infrared radiation, resulting in a dark or black appearance, which is easier to 

train classifiers to recognize in various classifications. 

Class ML KNN RT SVM 

Water 16.45 11.99 27.51 19.66 

Developed 100.59 120.02 142.81 92.80 

Green 420.29 349.94 452.58 415.13 

Barren 179.22 178.85 170.13 161.81 

Agriculture 404.37 460.1 327.88 431.52 

Table 2: Area in km2 covered by each class, for every classification method, 

in the visual band. 

Class ML KNN RT SVM 

Water 8.73 8.93 8.14 9.34 

Developed 119.32 205.31 167.00 125.41 

Green 445.72 431.24 445.96 464.49 

Barren 154.67 124.05 132.69 169.34 

Agriculture 392.44 351.35 367.08 352.30 

Table 3: Area in km2 covered by each class, for every classification method, 

in the infrared band. 

Table 4 presents the overall accuracy (OA) and kappa coefficient for each 

classification method applied to both visual and infrared bands. In the visual 

band, Random Forest (RT) classification yielded the highest accuracy at 

90.24%. This classifier accurately detected greenery and developed land but 

struggled with overdetecting water and misclassifying barren land as 

agricultural land. Instead, the SVM classifier (with an overall accuracy of 
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87.44%) effectively detected greenery and agricultural land but had issues 

with misclassifying developed land as agricultural land and, like the RT 

classifier, overdetecting water bodies. In this band, ML and KNN did not quite 

meet expectations, giving less satisfactory outcomes. 

In the infrared band, SVM performed the best, closely trailed by ML. Whereas 

KNN and RT produced inferior results in this band. SVM achieved an overall 

accuracy of 88.94%, demonstrating excellent water detection and an 

improvement over the visual band. Most classes were well detected, except 

for developed land, which was occasionally misclassified as either agricultural 

or barren land. The performance of the RT classifier in the infrared band was 

reduced, resulting in an overall accuracy of 85.17%. While it effectively 

detected water and green areas, it sometimes misclassified barren land as 

developed land. 

 
Visual Infrared 

ML KNN RT SVM ML KNN RT SVM 

OA % 80.70 79.71 90.24 87.44 87.08 80.86 85.17 88.94 

Kappa 0.73 0.72 0.86 0.82 0.82 0.74 0.79 0.85 

Table 4: OA and Kappa for each classifier, in visual and infrared band. 

The results discussed above are also presented in two charts in Figures 15 and 

16, providing a better visualization, understanding, and comparison. 

 

Figure 15: OA for each classifier, in visual and infrared band. 
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Figure 16: Kappa for each classifier, in visual and infrared band. 

Tables 5, 6, 7, and 8 present the precision, recall, and F1-score for each class 

in both the visual and infrared bands. In all visual band classifications, there 

were significant issues with detecting water. Shadows cast by nearby 

mountainous regions or very dark green areas were often misclassified as 

water. However, this issue showed considerable improvement in the infrared 

band, achieving an F1-score of at least 0.89, as indicated in the tables below. 

The developed class also faced classification issues in the visual band, and did 

not significantly improve in the infrared band, resulting in some developed 

areas being misclassified as agricultural land. 

Regarding the greenery class, detection was relatively good in both bands, 

with slightly better results in the infrared band. This improvement may be 

attributed to the high reflectance of infrared radiation by leaves, which results 

in a brighter red for healthier vegetation. 

Barren land did not perform well in the visual band, with some areas being 

misclassified as agricultural land. Although there was an improvement in the 

infrared band, misclassifications still occurred, with barren land often being 

mistaken for developed land. This issue was particularly noticeable in the 

largest area of barren land in Tirana, Mali me Gropa. 
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Agricultural land generally produced better results in the visual band. 

However, in both bands, there was a tendency to overfit this class, leading to 

the creation of agricultural areas instead of developed land. This issue was 

most prominent in the main urban area of Tirana, where many pixels belonging 

to the developed class were misclassified as agricultural land. 

Class 
Visual Infrared 

Prec. Recall F1 Prec. Recall F1 

Water 0.40 0.80 0.53 0.90 1.00 0.95 

Developed 0.50 0.64 0.56 0.62 0.76 0.68 

Green 0.95 0.87 0.90 0.96 0.89 0.92 

Barren 0.97 0.62 0.76 0.93 0.76 0.84 

Agriculture 0.72 0.93 0.81 0.81 0.92 0.86 

 

Table 5: Precision, Recall and F1-Score for ML classification, in visual and 

infrared band. 

Class 
Visual Infrared 

Prec. Recall F1 Prec. Recall F1 

Water 0.30 0.60 0.40 0.90 1.00 0.95 

Developed 0.48 0.67 0.56 0.54 0.87 0.67 

Green 1.00 0.81 0.89 0.96 0.86 0.91 

Barren 0.81 0.70 0.75 0.82 0.50 0.62 

Agriculture 0.78 0.88 0.83 0.76 0.87 0.81 

 

Table 6: Precision, Recall and F1-Score for KNN classification, in visual 

and infrared band. 

 

 



100                                                                                                                        JNS 35/2024 

 

 

Class 
Visual Infrared 

Prec. Recall F1 Prec. Recall F1 

Water 0.70 1.00 0.82 0.90 1.00 0.95 

Developed 0.72 0.90 0.80 0.80 0.80 0.80 

Green 0.96 0.95 0.96 0.97 0.89 0.93 

Barren 0.97 0.72 0.83 0.83 0.65 0.73 

Agriculture 0.90 0.95 0.92 0.72 0.92 0.81 

 

Table 7: Precision, Recall and F1-Score for RT classification, in visual and 

infrared band. 

 

Class 
Visual Infrared 

Prec. Recall F1 Prec. Recall F1 

Water 0.70 1.00 0.82 0.80 1.00 0.89 

Developed 0.76 0.72 0.74 0.73 0.70 0.71 

Green 0.92 0.93 0.93 0.99 0.93 0.96 

Barren 0.93 0.69 0.79 0.90 0.79 0.84 

Agriculture 0.86 0.94 0.90 0.83 0.95 0.88 

Table 8: Precision, Recall and F1-Score for SVM classification, in visual 

and infrared band. 

Conclusions 

This study evaluated the performance of four classification methods – 

Maximum Likelihood (ML), K-Nearest Neighbors (KNN), Random Trees 

(RT), and Support Vector Machine (SVM) – in classifying land cover types in 

Tirana County using both visual and infrared bands. The findings reveal 

several key insights into the efficacy and limitations of each classifier, 

particularly in terms of overall accuracy, kappa coefficient, and class-specific 

performance metrics such as precision, recall, and F1-score. 
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The RT classifier demonstrated the highest overall accuracy of 90.24% and a 

kappa coefficient of 0.86 in the visual band. This indicates a superior 

performance in detecting various land cover classes accurately. 

In the infrared band, the SVM classifier achieved the highest overall accuracy 

of 88.94% and a kappa coefficient of 0.85, showing a better performance in 

this spectral band. 

Both the ML and KNN classifiers performed less satisfactorily in comparison 

to RT and SVM across both bands. This may be due to the fact that many 

classification methods operate under the assumption that the prior probability 

of occurrence for each class is the same. This assumption is made because 

accurately estimating this prior probability for each class is challenging due to 

factors such as variability in data, terrain, and environmental conditions. 

Water bodies posed a significant challenge for all classifiers, particularly in 

the visual band. Shadows and dark areas were often misclassified as water, 

leading to high rates of false positives. The infrared band substantially 

improved the classification of water bodies across all classifiers, with F1-

scores reaching up to 0.95. This improvement is attributed to water's strong 

absorption of infrared radiation, which enhances its distinguishability from 

other land cover types. 

Developed land was frequently misclassified as agricultural land in both the 

visual and infrared bands. This issue was more pronounced in urban areas of 

Tirana, affecting the classifiers' precision for this class. While the infrared 

band showed some improvement, misclassification of developed land 

persisted, indicating the complexity of distinguishing developed areas from 

other similar classes such as barren lands. 

Green areas were generally well detected in both bands, with slight 

improvements in the infrared band due to the high reflectance of infrared 

radiation by the vegetation. This resulted in high precision for the greenery 

class. 

Agricultural land exhibited a tendency for overfitting in both bands, leading 

to some misclassifications of developed land as agricultural. This was 

particularly evident in urban areas, affecting the classifiers' overall 

performance. 
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The classification of barren land was less accurate in the visual band, with 

some areas being misclassified as agricultural land. Although the infrared 

band improved this classification, misclassifications still occurred, often 

confusing barren land with developed land. 

One notable issue that may have impacted the classification results is the 

disparity in the quantity and area of training samples for the Developed and 

Water classes compared to the other three classes. The smaller training sets 

for these classes could lead to less robust models, as the classifiers may not 

have been exposed to a sufficient variety of examples to accurately learn the 

distinguishing features of these two land cover types. This imbalance can 

result in misclassifications and reduced overall performance. Specifically, the 

limited data for Developed land might contribute to its misclassification as 

agricultural land, while the smaller sample size for Water areas could affect 

the distinguishing of water bodies from shadows and dark areas, particularly 

in the visual band. 

Choosing the appropriate spectral band is crucial for accurate land cover 

classification, as no single band is universally adequate for all classes in 

general. Different land cover types exhibit unique spectral signatures in 

various bands, making some bands more suitable for certain classes than 

others. For example, the infrared band enhances the detection of water bodies 

due to their strong absorption of infrared radiation, while the visual band might 

better capture certain urban features. Therefore, understanding the strengths 

and limitations of each band is essential to optimize the classifications 

performance across diverse land cover types. 

A limitation in this study is the absence of a reference or base map against 

which to compare the classified maps. This lack of an external benchmark 

prevents achieving absolute certainty in the classification accuracy. Therefore, 

the evaluation of classifiers performance relies exclusively on internal metrics 

and visual comparison, which may overlook undetected errors or 

misclassifications, thereby affecting the overall reliability of the results. 

Supervised classification techniques play an essential role in accurately 

identifying and mapping land cover types, as demonstrated in this study. By 

using labeled training data in GIS software, these methods can learn to 

distinguish between different land cover classes with great precision. The 

information gained from evaluating various classifiers highlights the necessity 
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of selecting appropriate methods and spectral bands, customized to the 

specific characteristics of the land cover being studied. The use of supervised 

classification techniques stands as an indispensable tool in accurately mapping 

land cover types, offering valuable information necessary for a wide range of 

applications across diverse fields. 
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