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Abstract 

Numerical methods of integration of differential equations give us a clearer 

and simpler picture of the dynamics and progress of the system, especially in 

cases where the system is unbalanced and jumps from one type of stability to 

another with the change of one of the parameters. The QZS vibration isolator 

is a simple case where numerical methods for solving ODE equations are quite 

favourable and efficient. In this study, a simplified Vibration Isolator model 

has been considered and the dynamics equations have been solved by means 

of numerical integration for different values of frequency and other 

parameters that affect the performance of the system assuming an 

inappropriate mass placed in system. Phase spaces, time series, and Poincare 

maps for the entire parameter space are presented. The chaoticity of the system 

has been studied by means of Lyapunov exponents and it has been concluded 

that the system is not chaos by considering different values of the control 

parameter. The presence of "periodic windows" in the bifurcation diagram, 

which was simulated with a simple but special method, through Poincare 

maps, was also ascertained. Examining the system dynamics for a wide range 

of control parameters gives us a clear picture of the system performance. 

Key words: Numerical method, differential equation, phase space, time series, 

Lyapunov exponents.  
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Përmbledhje 

Metodat numerike të integrimit të ekuacioneve diferenciale na japin një tabllo 

më të qartë dhe të thjeshtë të dinamikës dhe të ecurisë së sistemit sidomos në 

rastet kur sistemi është i pa-ekuilibruar dhe kërcen nga një lloji stabiliteti në 

një tjetër me ndryshimin e njërit prej parametrave. Izolatori i vibrimeve QZS 

është një rast i thjeshtë ku metodat numerike për zgjidhjen e ekuacioneve ODE 

janë mjaft të favorshme dhe efikase. Në këtë studim është marrë në konsiderate 

një model i thjeshtuar Izolatori Vibrimesh dhe janë zgjidhur ekuacionet  e 

dinamikës me anë të integrimit numerik për vlera të ndryshme të frekuencës 

dhe parametrave të tjerë të cilët ndikojnë në ecurinë e sistemit duke supozuar 

një masë të papërshtatshme të vendosur në sistem. Janë paraqitur hapësirat 

fazore, seritë kohore dhe hartat e Poincare për të gjithë hapësirën e 

parametrave. Është studiuar kaoticiteti i sistemit me anë të eksponentëve të 

Lyaponovit dhe është arritur përfundimi se sistemi nuk është kaos duke marrë 

në konsideratë vlera të ndryshme të parametrit të kontrollit. Gjithashtu është 

konstatuar prania e “dritareve periodike” në diagramën e bifurkacionit e cila 

është simuluar me një metodë të thjeshtë por të veçantë, nëpërmjet hartave të 

Poincare. Shqyrtimi i dinamikës së sistemit për një rang të gjerë të 

parametrave të kontrollit na jap një informacion të qartë të ecurisë së sistemit. 

Fjalë kyçe: Metoda numerike, ekuacione diferenciale, hapësira fazore, seritë 

kohore, eksponentët e Lyapunovit. 

Introduction 

This study considers a simplified mechanical model of a vibration isolator and 

attempts to study the time course and stability of the system. The examined 

model consists of a differential equation (like the Duffing oscillator) where its 

analytical solution presents significant difficulties while the numerical 

integration greatly facilitates the way to the goal of the study. Using the 4th 

order Runge Kutta method turns out to be quite efficient and gives us enough 

information on what is required. However, the use of the ODE45 and ODE23 

packages, whose basis is the same as the model cited above, further facilitates 

the work of solving the equations. After fitting the equations, the necessary 

simulations were performed for different values of the control parameters. The 

oscillation shown is indeed chaotic, so it is necessary to study whether the 

system reaches chaos. For this reason, by means of Lyapunov exponents, it 

has been seen that for different, but close, initial points, the trajectories do not 
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diverge. To further see the performance of the system in relation to the control 

parameter (in this case, the frequency of the external exciter) we have 

simulated the bifurcation diagram which is extracted from a 3-dimensional 

system of Poincare maps.  

1) Mathematical Modelling of a QZS Vibration Isolator 

The vibration isolator has found wide use (Zhaozhao Ma et.al, 2022), 

(Snowdon, 1978) in the industrial and life fields undergoing a marked 

development in the theoretical point of view and more in its engineering 

context. However, in-depth analysis of the dynamics of the system and its 

behaviour for different scenarios of the impact of external factors on the 

system is necessary. Similar systems have been proposed by different 

researchers (Ivana Kovacica et.al, 2008), (Ngoc Vo, Tanh Le, 2022), (Meng, 

2023) and have been analysed in detail for its behaviour in cases of external 

influences. The system we consider is the same as the model reviewed by 

Carrella et.al (2012). 

 

Figure 1. Vibration isolator, simplified model 
 

In our case, the passive negative model of the vibration isolator QZS is 

considered as shown in figure 1. The figure shows the springs with the 

corresponding coefficients kv and kh while the coefficient of the piston is 

marked with C and we must take into account that Fd=cdx/dt which it means 

that as long as we are in equilibrium this force is not taken into consideration. 

Writing the equations for the system under consideration: 
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𝑥𝑐
, �̂� =

𝐹

𝑘𝑣𝑥𝑐
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𝑙
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, �̂� =

𝑘

𝑘𝑣
, 𝑥𝑐 = (𝑙0

2 + 𝑙2)1/2 at the static 

equilibrium position. 

If the displacement amplitude from the equilibrium position is small, we can 

do the Taylor decomposition of equation 1.1 and arrive at the conclusion: 

�̂�(�̂�) = 𝛼�̂� + 𝛾�̂�3 

 

1.3 

Where α and γ are given: 

𝛼 = 1 − 2𝛽
1 − 𝑙

𝑙
 

𝛾 = 𝛽
1 − 𝑙2

𝑙3
 

1.4 

We have not referred to mathematical operations in the study because it is 

outside the scope of our paper. The mathematical model considering the case 

of placing a measure outside its predicted value (Yong Wang et.al, 2017) is 

given in the form: 

𝑚�̈� + 𝑐�̇� + 𝑘𝑣𝛼(𝑥 + 𝑥𝑛) +
𝛾𝑘𝑣
𝑥𝑠2
(𝑥 + 𝑥𝑛)

3 = 𝑚𝑔 + 𝐹𝑐𝑜𝑠(𝜔𝑡) 
1.5 
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Referring to studies (A.Carrella et.al, 2017; I. Kovacica et.al, 2008) the 

mathematical model of this system is given: 

�̈� + 𝜁�̇� + 𝑏1𝑥 + 𝑏2𝑥
3 = 𝑓0 + 𝑓1𝑐𝑜𝑠(𝛺𝜏) 1.6 

This model can be defined as the Duffing oscillator model (Jia, 2020), (Gatti, 

Ivana Kovacic , 2020), (Qu, 2020). Next, the values of the parameters were 

taken into consideration: δ = 0.15, 𝑙= 0.667, β = 1, ζ = 0.025 (A.Carrella et.al, 

2017, Yong Wang et.al, 2017). 

2) Computer simulation, phase space and time series 

The proposed mathematical model consists of differential equations of the 

second order, the solution of which will give us accurate information on the 

performance of the system. This mathematical model, like the Duffing model, 

presents difficulties in analytical integration, which is beyond the scope of this 

paper. The use of numerical integration methods with suitable approximations 

provides us with accurate and fast information about the performance of the 

system over time. The Euler method of numerical integration is the basic 

method from which other more advanced numerical integration methods such 

as the 4th order Runge Kutta method originate (Berwick, 2012). In this paper, 

the ODE 45 and ODE 23 algorithms provided by MATLAB (Berwick, 2012) 

and Octave are used, which is based on the 4th order Runge Kutta method 

(Said Ouala et.al, 2021). Using ODE45 greatly simplifies the numerical 

integration and follows a rigorous path of integration steps (Böttcher, 2021). 

Next, iterations were performed up to 1000-time units with a step of 0.01 and 

with initial values (0,0,0) for different values of the control parameter Ω for 

the defined function of the case in question. For the equation to be suitable for 

the ODE45 algorithm executed in MATLAB, the necessary substitutions have 

been made to convert the second order differential equation into 3 first order 

differential equations as follows: 

�̇� = 𝑦; 2.1 

�̇� = −𝜁𝑦 − 𝑏1𝑥 − 𝑏2𝑥
3 + 𝑓0 + 𝑓1𝑐𝑜𝑠(𝛺𝑧) 2.2 

�̇� = 1 2.3 

Where z represents time as a variable of the system of equations. In the 

following, the parameterized unit of time will be considered above the value 
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of 200 because the system reaches stability in the limit cycle after a certain 

period of irregular oscillations, in cases where there is a limit cycle, while in 

cases where the behaviour is chaotic, the time indexing is done to clearly 

concluded in potential attractors. The same integrations are considered for 

different values of the control parameter to arrive at the study of the stability 

and performance of the system for a wider range of values of this parameter. 

Figure 2 shows the phase spaces of the system oscillation for the control 

parameter from 0.6 to 1.08 as well as the progress of the phase space per time 

unit from 800 to 1000. The system does not undergo changes in time after 

joining the limit cycle and also we do not expect the system to arrive at chaos 

because there cannot be chaos in 2 size (Strogatz, 2003) but in the study we 

used the term "chaotic behaviour" not to define that the system is exactly 

chaotic but to characterize the quasi-chaotic and disordered behaviour.   

Also, in the study we will prove that the model under consideration is not 

chaos. In Figure 2 we have presented the phase spaces for some cases of 

control parameters Ω which is frequence of oscillation. The first part (figure 

2, a) represents a disordered system and as we will see below, the system 

undergoes chaotic behaviour and coincides with the case when f1=0.02. The 

second part represents a more regular behaviour and as can be seen the system, 

through a bifurcation near the value 0.75, passes into a simple oscillator, which 

can also be observed in figure 2 and others, case which coincides with f1=0.01. 
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Figure 2. Phase spaces for values of Ω ranging from 0.6 to 1.08 for two 

different cases a) f1=0.02, b) f1=0.01. 
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In the following figures (Figure 3, 4, 5) we have presented the phase space and 

time series for some values of the Ω parameter, where we can more clearly 

analyse the oscillatory behaviour of the system under consideration. We see 

that the system goes through bifurcation processes from stable limit to chaotic 

behaviour and from chaotic behaviour to periodic oscillations, to two-periodic 

oscillations and to simple oscillators. 

 

 

Figure 3. Phase spaces and time series for Ω=0.75 
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Figure 4. Phase spaces and time series for Ω=0.63. 

 

 

Figure 5. Phase spaces and time series for Ω=0.54 
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It is noted that near the value Ω=0.7 the system undergoes a clear bifurcation 

from multiperiodic oscillation to two-periodic oscillation, which we will see 

clearly in the bifurcation diagrams in the following figures. 

3) Defining chaos 

As we mentioned above, this system cannot be categorized as chaos because 

the minimum assessment does not meet the initial conditions of chaos, such as 

sensitivity to initial conditions (Ivana Kovacica et.al, 2008), (D. H. Rothman, 

2022). The system for different initial conditions must have a positive 

Lyapunov exponent (at least one of them being positive) to be defined as 

chaos. If we look in figure 6 for none of the control parameter values, the 

divergence between the 2 trajectories for different initial values shows that the 

Lyapunov exponent is negative.  

Considered both the dimensions presented x and dx/dt (assumed as an 

additional dimension) and the conclusion is the same. Initial values (0,0) and 

(0.01,0) were taken. In figure 5 we presented a more interesting model 

(Carrella et.al 2012), (Biswa, 2007) because for each value of t we have 

dx=x1(t)-x2(t) and dy=y1(t)-y2(t) were determined and the geometric sum was 

taken into consideration of divergence between trajectories. We also see that 

for some values of the frequency, the saturation of the divergence between the 

trajectories is reached faster than for some other values of the frequency. 
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Figure 6. Determination of chaoticity by means of Lyapunov exponents for 

Ω=0.3 to 0.9. 

 

4) Stability of solutions and bifurcations depending on parameters 

The following figures show bifurcation diagrams and Poincare maps to 

explore the parameter space for different frequency values. All the values in 

figures 11 are obtained by choosing the values of x and y (where 𝑦 = �̇� 

according to the above equations) for a fixed value of time 2π/Ω. This fixed 

time value is modelled as a plane where the solutions of the equation are 

expected, and the points in figure represent the Poincare map (Barenghi, 

2012).  

Figure 9 present the Poincare maps for two values of the frequency Ω which 

represents the basic parameter for determining the Poincare plane or section. 

As we will explain below, we have extracted bifurcation diagrams from 

Poincare maps by performing numerical integrations and selecting numerical 

values for each Poincare map and plotting them for each frequency value. 
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In figure 7 we see the bifurcation diagram for a frequency spectrum from 0.3 

to 1.1 where the solutions for each frequency value are displayed which gives 

us information about bifurcation oscillations and chaotic behaviour. In figure 

7 and 8 (more detailed) we see that from the frequency value 0.3 to 0.5 the 

system has simple oscillations except for the case 0.41 to 0.45 where the 

system undergoes minor changes. We see that from a value of 0.5 to close to 

0.55 the system offers chaotic behaviour within which there are periodic 

windows where the system departs from disordered and strange behaviour and 

approaches limit cycles. We see that above the value of 0.6 the system 

undergoes great changes in its oscillations, that it goes from 4 - periodic to 2 -

periodic and the amplitude of the oscillation changes a lot. 

 

Figure 7. Bifurcation diagram for Ω ranging from 0.3 to 1.1 for the case 

where f1=0.02 
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Figure 8. Bifurcation diagram for Ω ranging from 0.5 to 0.9 for the case 

when f1=0.02 and finding periodic windows. 
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Figure 9. Bifurcation diagram for Ω ranging from 0.3 to 0.5 for the case 

where f1=0.02. 

In figure 10 we see the bifurcation diagrams for f1 = 0.01 and 0.015, 

respectively, which show less disorder and chaotic behaviour than the case 

when f1=0.02. However, we see that the case when f1=0.015 lies in an 

intermediate case between the diagrams for f1 = 0.01 and f1 = 0.02. In all cases 

Hopf bifurcations and stable oscillations according to a multi-periodic limit 

cycle 1 appear. 
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Figure 10. Bifurcation diagram where omega ranges from 0.2 to 1.1 for 

f1=0.01 and 0.015. 

Figure 11 shows the Poincare maps for Ω=0.5 and for 0.55, whereas seen the 

system undergoes extreme changes, but since the system, referring to the 

bifurcation diagrams, is quite sensitive to the frequency of the exciting 

oscillation, it is expected that the Poincare maps have great divergences 

between them. 
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Figure 11. Poincare map for Ω=0.5 and 0.55 

5) From Poincare maps to the bifurcation diagrams 

As mentioned, it is convenient and easier to convert Poincare maps into 

bifurcation diagrams by manipulating MATLAB commands. In the following 

figures, the graphical illustration is given by means of 3D figures with parallel 

planes for each value of the control parameter.  
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Figure 12. 3D illustration of the bifurcation diagram simulation method 

from Poincare maps. 

To get the bifurcation diagram from the Poincare map we have made a 90-

degree rotation of the 3-dimensional figure, where the Poincare maps from the 

2-dimensional map will appear simply as dots on a line. The simulation of the 

Poincare maps for closer values of the control parameter gives us a clearer 

view of the bifurcation diagram. 

Conclusions 

The presented study provides information on the performance of the vibration 

isolator system for a wide range of excitation frequency values. The case when 

f1 is 0.01 the system is more stabilized while for the value 0.02 the system 

exhibits chaotic behaviour. The degree of chaoticity is studied by means of 

Lyapunov exponents, according to which, since they are negative for different 

values of the frequency, the system cannot be accepted as chaos, but behaves 

quite close to it. 

The system undergoes bifurcations for parameterized values of frequency 0.6, 

0.68 and 0.78 approximately. Poincare maps for the 0.5 and 0.55 frequency 
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values are also presented, and further we presented the method of simulating 

bifurcation diagrams from Poincare maps. All simulations were performed 

with MATLAB, where the solution of the differential equations was performed 

with ODE45 and ODE23 which gave high efficiency in the numerical 

integration of the system. 
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