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Abstract 

In many exoplanetary systems asteroids, planets, or moons can be found near 

Lagrange points L4 and L5. Described as many-body problems, planetary 

systems are fundamentally chaotic with high sensitivity from initial conditions. 

However, for various ranges of the mass parameter, there are observed specific 

regimes that defy chaoticity. Of particular relevance is the mass ratio 

parameter with critical value µc=0.0385. For this critical value, the stability 

of the Lagrange points L4 and L5 changes followed by a bifurcation of the 

system. The present paper focuses on analysing the motion of a test 

astrophysical objects within the exoplanetary system HD 126053.  We aim to 

find a stable trajectory around the Lagrange points of an astrophysical object 

with application to the mentioned exoplanetary system. In the initial phase of 

the study we consider a body with utterly small mass (for example, the mass 

of a Trojan asteroid, Trojan exomoon, or the mass of a Trojan Earth planet) 

that begins it motion near one of the Lagrange points of the binary star system, 

HD 126053. In the second phase of the study we increase this mass until the 

critical value of the system's mass ratio is reached. We predict that an 

astrophysical object (or a cluster of astrophysical objects) with mass at most 

6.365 MJ can orbit in a stable configuration around the Lagrange points 

within the HD 126053 system. The analytical calculations are performed 

under the framework of the Planar Circular Restricted Three-Body Problem. 

The studies about this problem and the results of this study are of great 

importance, especially in Physics, Astronomy, and the field of Mechanics of 

Celestial Bodies. On the other hand, they expand the applications of the theory 

of dynamical systems to better understand the dynamics of the interactions of 

celestial bodies in different exoplanetary systems. 
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Përmbledhje  

Në shumë sisteme ekzoplanetare, asteroidë, planetë ose hëna mund të gjenden 

pranë pikave të Lagranzhit L4 dhe L5. Të përshkruara si sisteme me shumë 

trupa, sistemet planetare janë thelbësisht kaotike me ndjeshmëri të lartë ndaj 

kushteve fillestare. Megjithatë, për vlera të ndryshme të prametrit të masës, 

vihen re zona specifike që sfidojnë kaoticitetin. Me rëndësi të vecantë është 

parametri i raportit të masës me vlerë kritike µc=0.0385. Për këtë vlerë kritike, 

stabiliteti i pikave të Lagranzhit L4 dhe L5 ndryshon dhe për pasojë ndodh një 

bifurkacion i sistemit. Artikulli aktual fokusohet në analizimin e lëvizjes së 

objekteve astrofizike test brenda sistemit ekzoplanetar HD 126053. Ne 

synojmë të gjejmë një trajektore stabël rreth pikave të Lagranzhit të një trupi 

astronomik në sistemin ekzoplanetar që përmendëm më sipër. Në fazën 

fillestare të studimit ne konsiderojmë një trup me masë krejtësisht të vogël (për 

shembull, masa e një asteroidi Trojan, ekzohëne Trojane, ose masa e një 

planeti Tokësor Trojanë) lëvizja e të cilit fillon në afërsi të njërës prej pikave 

të Lagranzhit të sistemit binar yjor, HD 126053. Në fazën e dytë të studimit 

rrisim vlerën e kësaj mase, derisa të arrihet vlera kritike e raportit të masës 

së sistemit. Ne parashikojmë që një objekt astrofizik (ose një grumbull 

objektesh astrofizike) me masë deri në vlerën 6.365 MJ mund të orbitojë në një 

konfigurim stabël përqark pikave të Lagranzhit brenda sistemit HD 126053. 

Llogaritjet analitike kryhen në kuadër të problemit të kufizuar rrethor planar 

të tre trupave. Studimet rreth këtij problemi dhe rezultatet e këtij studimi janë 

të një rëndësie të madhe, sidomos në Fizikë, Astronomi, dhe në fushën e 

Mekanikës së Trupave Qiellorë. Nga ana tjetër, ata zgjerojnë aplikimet e 

Teorisë së Sistemeve Dinamike për të kuptuar më mirë dinamikën e 

bashkëveprimeve të trupave qiellorë në sisteme të ndryshme ekzoplanetare.   

Fjalë kyҫe: Sistemi HD 126053, ekzoplanet tokësor trojan, ekzohënë trojane. 

asteroid trojan, pikat e lagranzhit, problemi i kufizuar rrethor i tre trupave.  

Introduction 

The case of two gravitationally interacting bodies can be fully solved, and was 

solved by Newton (Newton, 1687). The general three-body problem in 

Newtonian gravitation is fundamentally non-solvable from an analytical point 

of view (Liao et al., 2022; Li & Shijun, 2017) and the numerical solutions are 

quite complex to interpret (Li, Yipeng & Shijun, 2017). In order to gain 
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valuable insights, simplified special cases are often analysed like the Circular 

Restricted Three-Body Problem (CRTPB). In this regime one of the three 

bodies, which has negligible mass, exerts a negligible force on the remaining 

bodies and virtually does not affect their motion (Haoze, 2019). Within this 

approximation, the study of the dynamics is reduced to the analysis of the 

motion of the third body revolving around two others already in Keplerian 

orbits around their common center of mass (Sirbu, Leonardi, 2023). A further 

simplification assumes the third body travels in the same plane as the two stars, 

thus yielding the Planar Circular Restricted Three-Body Problem (PCRTBP) 

(Bhanu, et.al, 2019).  

The dynamics of a few bodies, particularly the Circular Restricted Three-Body 

Problem, is one of the intriguing topics in the subject of modern Nonlinear 

Mechanics and Dynamical Astronomy. Numerous areas of Astronomy, 

including Space Dynamics, Stellar Systems, Artificial Satellites, Stellar 

Cluster and Galactic Dynamics have employed the Circular Restricted Three-

Body Problem which still represents an active and stimulating field of research 

(Kumar, Gupta, & Aggarwal, 2017; Zotos, 2015, Kumar, Kushvah, Kumar Pal, 

2024).  

In the case of two bodies where the much smaller one revolves around the 

more massive body, there exist five points called the Lagrange points and 

denoted by Li, (i = 1, ..., 5). Among them, three are collinear (L1, L2, and L3 

(Euler 1763, 1764, 1765)) and two triangular (L4, and L5 (Lagrange, 1873)). 

A sketch of the Lagrange points is shown in Figure 1.  

Often, mathematical models of real-world phenomena are formulated in terms 

of systems of nonlinear differential equations, which can be difficult to solve 

explicitly. To overcome this barrier, we take a qualitative approach to the 

analysis of solutions to nonlinear systems by making phase portraits (this is a 

geometric representation of the orbits of a dynamical system in the phase 

plane) and using Stability Analysis. To be able analyse these systems we will 

linearize them at their equilibria (Morgan, 2015). In this study, we use the 

Linear Stability Analysis and Nonlinear Analysis of the CRTBP.  

The Linear Stability Analysis was used to study the stability of the Lagrange 

points. Linear Stability Analysis describes the behaviour of a system at near 

equilibrium (Demirel & Gerbaud, 2019). In our case, this equilibrium is the 

Lagrange points. Stability analysis based on the linearized CRTBP equations 

only guarantees that the system is stable to infinitesimal perturbations, but it 

may be unstable to finite ones (Chang & Lu, 2019). The collinear points are 
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unstable for all values of mass parameter but triangular points are stable for 

the mass parameter under a critical value 𝜇𝑐 ≈ 0.0385 (Idrisi, Haruna, 

Eshetie, 2023). The fundamental theory of Nonlinear Analysis (a branch of 

mathematics (Zeidler, 1990) is to analyse a system’s dynamics in phase space; 

a point in this region at any time characterizes the system’s state.  

This theory used to study the dynamics of nonlinear systems, chaos a 

deterministic system exhibits aperiodic behaviour that depends sensitively on 

the initial conditions, thereby rendering long-term prediction impossible 

(Strogatz, 2018), bifurcations, etc., and often relies on numerical methods and 

computational techniques to approximate solutions, as closed-form solutions 

may not be readily available. A bifurcation of a dynamical system occurs when 

the parameter value of a system changes such that it causes a sudden 

qualitative change in its behaviour (Caitlin Mc Cann, 2013). 

The small orbits making small oscillations about equilibrium points (in our 

case about Lagrange points), traditionally called librations (Steven H. 

Strogatz, 2018). For orbits with relatively small eccentricities, the librations 

around the stable Lagrangian equilibrium points L4 and L5 are one of the two 

possible configurations of a stable co-orbital system, called a tadpole orbit (by 

analogy with the restricted three-body problem, determined L4 as the 

equilibrium point when the less massive planet is 60o ahead of the more 

massive one and L5 when it is behind) (Hippke & Angerhausen, 2015, Leleu 

et al. 2015, 2017).  

The first observation of a tadpole orbit was performed by Wolf (1906), where 

the asteroid Achilles shares its orbit with Jupiter around L4. Today more than 

6000 bodies (Jupiter Trojans) in tadpole orbits are known, as well as a few 

other cases involving Neptune, Mars, and Earth (Leleu et al. 2015, Marzari et 

al. 2002). 

 

 

https://www.vedantu.com/jee-main/maths-difference-between-linear-and-nonlinear-analysis
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Figure 1. Schematic representation of Lagrange points for the Sun-Earth 

system (Image source: 

https://www.spaceacademy.net.au/library/notes/lagrangp.htm). 

Here we are interested on co-orbital configurations, the configurations of two 

or more astronomical bodies (such as asteroids, moons, or planets) orbiting at 

the same, or very similar, distance from their primary star. Several celestial 

bodies in co-orbital configurations exist in our solar systems. However, co-

orbital exoplanets have not yet been discovered (Leleu et al. 2015), due to the 

challenges such observations pose. A potential observation of co-orbital 

exoplanets would provide valuable information on the formation of planetary 

systems as well as on the interactions between planets and their host star 

(Robutel & Leleu, 2024).  

Some interesting results are presented in three articles by Hysa, nonlinear 

dynamics of a test particle near the Lagrange points L4 and L5 (Earth-Moon 

and Sun-Earth case) (Hysa, 2024), a study of the nonlinear dynamics inside 

the exoplanetary system Kepler-22 using MATLAB® software (Hysa, 2024a) 

and study of the resonant motion of a test particle inside Kepler 69 using 

Circular Restricted Three-Body Problem (Hysa, 2024b). Presuming the 

existence of Trojan astronomical bodies within exoplanetary systems, we 

employ the Circular Restricted Three-Body Problem model in the binary star 

system HD 126053, which has been selected from among several tens such 

systems for the reasons outlined below. This system is composed of a primary 

star (HD 126053 A) with a mass of 0.89 MS and a secondary star (HD 126053 

B) with a mass of 0.03 MS, where MS is the solar mass. The mass parameter 

https://www.spaceacademy.net.au/library/notes/lagrangp.htm
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of this system is approximately 0.0326, less than the critical value 𝜇𝑐. An 

additional reason for our emphasis on this binary system is its proximity to our 

solar system, located at a distance of 57.08 light years, which enhances the 

likelihood of direct observations. 

Methods 

In this study, we use the Circular Restricted Three-Body Problem model. This 

model describes the motion of a celestial body with negligible mass in three-

dimensional physical space (Stephanie et al. 2019). The motion is governed 

by the gravitational attraction of two massive bodies, which are assumed to 

rotate in circles with uniform angular velocity around their common center of 

mass (Murray & Dermott, 1999). The two massive bodies (primary and 

secondary) have masses 𝑚1 and 𝑚2 (𝑚1 ≥ 𝑚2), respectively. The third body 

with mass 𝑚3 has a negligible effect on the motions of 𝑚1 and 𝑚2 (Stephanie 

et al. 2019, Blaga et al., 2021). In CRTBP, the mass ratio (Yan, 2020, Langford 

& Lauren M. Weiss 2023): 

                                                   𝜇 =
𝑚2

𝑚1+𝑚2
,                                              (1)  

determines the dynamical solution (Langford A., and Lauren M. Weiss 2023).  

We set the center of mass of the system as the origin and we set the position 

of 𝑚1 at (−𝜇, 0, 0), and the position of 𝑚2 at (1 − 𝜇, 0, 0) (Yan, 2020). From 

Kepler’s third law we have 𝑇2 = 4𝜋2𝑎3/𝐺(𝜇1 + 𝜇2), where  𝜇1 = 1 − 𝜇 and 

𝜇2 = 𝜇. In our calculations, the unit of distance a is the distance between 

primary and secondary star. The unit of time is taken such that the period of 

the orbits of primary and secondary stars is T = 2π and the universal constant 

of gravitation becomes G = 1 (Langford, & Lauren M. Weiss 2023). Under 

these assumptions the equations of motions for the CRTBP in the 

nondimensional form read (Gheorghe Sirbu, Mauro Leonardi, 2023):  

                                          

�̈� = 2�̇� +
𝜕𝑈

𝜕𝑥
.

�̈� = −2�̇� −
𝜕𝑈

𝜕𝑦

�̈� =
𝜕𝑈

𝜕𝑧
,

.                                                     (2) 

where x, y, and z are the components of the third body relative to the system 

barycenter (Murray & Dermott, 1999) and �̇� = 𝑣𝑥, �̇� = 𝑣𝑦, and �̇� = 𝑣𝑧 are the 

velocity components of the third body, according to the directions x, y, and z, 

respectively. The pseudo-potential function U is given by 
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                       𝑈 =
1

2
(𝑥2 + 𝑦2) + (

1−𝜇

𝑟1
+
𝜇

𝑟2
) +

𝜇(1−𝜇)

2
,                              (3) 

where 𝑟1 = √(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2 and 𝑟2 = √(𝑥 + 𝜇 − 1)2 + 𝑦2 + 𝑧2 are the 

distances from the primary and secondary star to the third body, respectively 

(Korneev & Aksenov, 2020). The CRTBP has one integral of motion, namely 

the energy E:   

                                    𝐸 =
(�̇�2+�̇�2+�̇�2)

2
+𝑈 = −

𝐶

2
,                                     (4) 

Astronomers also often use the Jacobi constant C = -2E (Yan, 2020, Langford, 

& Lauren M. Weiss 2023).  

Considering that the dynamical equation of the third body in the Circular 

Restricted Three-Body Problem is a time-varying high-dimensional non-linear 

system in the inertial frame, it can hardly be solved by using analytical 

approaches (Fabao Gao & Yongqing, 2020). 

Nonlinear systems can be very complicated, if not impossible, to solve 

explicitly; however, when it comes to modelling real-world phenomena, the 

majority of the systems that arise are nonlinear. To be able to analyze these 

systems we will linearize them at their equilibria, and then construct phase 

portraits to visualize the trajectories of the solutions to the system (Morgan, 

2015).  

The analytical solution of the nonlinear system (2) is unknown (Korneev & 

Aksenov, 2020). So, the generation of trajectories of an astronomical test body 

requires the use of numerical methods. For the numerical integration of this 

nonlinear system, we used the Runge–Kutta–Fehlberg method (RKF45). This 

method is an algorithm in the Numerical Analysis that can be used to solve 

numerically the nonlinear system (2) (Sharmin et al., 2021, Svetlana, 2017, 

John H. Mathews & Kurtis K. Fink, 2004).   

Some particular solutions obtained by the Linearization Method can give 

restricted analytical solutions (Korneev & Aksenov, 2020). This method 

(Linearization Method) is a linear approximation of the nonlinear system (2) 

that is valid in a small region around Lagrange points.  

The problem of the stability condition in the linear approximation of the 

Lagrange points L4 and L5 was first studied by Gascheau in 1843. They found 

that if the co-orbital astronomical bodies were in circular and coplanar motion, 

the Lagrange points would be linearly stable if: 
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𝑚1𝑚2+𝑚1𝑚3+𝑚2𝑚3

(𝑚1+𝑚2+𝑚3)2
<

1

27
.                                         (5) 

For the Circular Restricted Three-Body Problem, we can define the mass 

parameter by equation (1). Some results from this problem are expected to 

hold in the non-restricted case. To compare our results with the restricted case 

we define the mass parameter in our system as: 

                                             𝜇3 =
𝑚2+𝑚3

𝑚1+𝑚2+𝑚3
,                                              (6) 

which is a generalization of the mass parameter considered in the restricted 

case (Leleu, et al. 2015, Moraes et al., 2023). So, from this parameter, we have 

the possibility to consider the mass of the third body in the calculations.  

We introduce the state vector 𝐱 = [𝑥, 𝑦, 𝑧, �̇�, �̇�, �̇�]𝑇 and its time derivative �̇� =
[�̇�, �̇�, �̇�, �̈�, �̈�, �̈�]𝑇 (Truesdale, 2012). Substituting the acceleration terms from 

the system of equations (2), we see that �̇� is a function of 𝐱:  

                                �̇� =
𝑑𝐱

𝑑𝑡
=

(

 
 
 
 
 

�̇�
�̇�
�̇�

2�̇� +
𝜕𝑈

𝜕𝑥

−2�̇� +
𝜕𝑈

𝜕𝑦

𝜕𝑈

𝜕𝑥 )

 
 
 
 
 

= 𝐴𝐱 ,                                  (7) 

where  

                𝐴 =
𝜕�̇�

𝜕𝐱
=

(

 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
𝑈𝑥𝑥 𝑈𝑥𝑦 𝑈𝑥𝑧 0 2 0

𝑈𝑦𝑥 𝑈𝑦𝑦 𝑈𝑦𝑧 −2 0 0

𝑈𝑧𝑥 𝑈𝑧𝑦 𝑈𝑧𝑧 0 0 0)

 
 
 
 

,                           (8) 

- is the Jacobian of the state derivative �̇� and 𝑈𝑥𝑥, 𝑈𝑥𝑦, 𝑈𝑥𝑧, 𝑈𝑦𝑥, 𝑈𝑦𝑦, 𝑈𝑦𝑧, 

𝑈𝑧𝑥, 𝑈𝑧𝑦, and 𝑈𝑧𝑧 are the second-order partial derivatives of U given by 

Equation (3) (Langford & Lauren M. Weiss, 2023; Truesdale, 2012). Given a 

matrix A, if 𝐴𝑣 = 𝜆𝑣, 𝑣 is an eigenvector and 𝜆 the corresponding eigenvalue. 

The system (𝐴 − 𝜆𝐼)𝑣 = 0 has a non-trivial solution (i.e. 𝑣 ≠ 0) if and only 

if det(𝐴 − 𝜆𝐼)𝑣 = 0(Nipoti, 2018). When det(𝐴 − 𝜆𝐼)𝑣 = 0 is written 
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explicitly, it is a polynomial in 𝜆, known as the characteristic polynomial of 

the matrix (Nipoti, 2018). For the Planar Circular Restricted Three-Body 

Problem (𝑧 = 0), the linear stability of points L4 and L5 is treated in many 

textbooks, e.g. Murray and Dermott (1999). The proper frequencies 𝜆 in the 

vicinity of triangular points are solutions of: 

                                  𝜆4 + 𝜆2 +
27

4
𝜇(1 − 𝜇) = 0.                                   (9) 

The frequencies of motion of a celestial body around L4 and L5 are given by 

Murray and Dermott (1999):  

                         

𝜆1,2 = ±√
1

2
[−1 − √1 − 27𝜇(1 − 𝜇)],

𝜆3,4 = ±√
1

2
[−1 + √1 − 27𝜇(1 − 𝜇)],

                         (10) 

where 𝜆1,2 is the frequency of the short–period epicyclic motion and 𝜆3,4 is the 

frequency of the long-period motion epicenter about L4 or L5.  

The concept of stability applies in general to x(t), which is a solution of a 

system of differential equations �̇� = 𝐟(𝐱, 𝑡). Stability of equilibrium points: 

𝐱 = 𝐋, where 𝐋 = 𝑐𝑜𝑛𝑠𝑡, is a stable equilibrium point if, for given 𝛾 > 0, there 

exist an 𝛿 > 0 such that if at a reference (initial) time 𝑡0, |𝑥(𝑡0)| − 𝐋 < 𝛿 then, 

for all 𝑡 > 𝑡0, |𝑥(𝑡)| − 𝐋 < 𝛾 (Nipoti, 2018).  An equilibrium point is linearly 

stable if it is stable against all small (i.e. linear) disturbances (|𝛿𝐱|/|𝐱| ≪ 1). 
An equilibrium point is non-linearly stable if it is stable all disturbances (not 

necessarily small). In general, linear stability does not imply non-linear 

stability, but it has been shown that for 𝜇 < 𝜇𝑐 the triangular points are also 

non-linearly stable (Nipoti, 2018).  

Results and discussions  

The data in Table 1 are taken from the links: https://www.stellarcatalog.com/, 

https://adg.univie.ac.at/schwarz/multiple.html,https://exoplanetarchive.ipac.c

altech.edu/docs/counts_detail.html,https://www.stellarcatalog.com/stars/hd-

126053. 

We have determined the mass parameter for 136 binary star systems, as shown 

in Table 1. Given that the mass the third body in proximity to the Lagrange 

points is negligible, we ascertain the mass parameter for each system. For HD 

126053, we have 𝑚1 = 0.89𝑀𝑆 and 𝑚2 = 0.03 𝑀𝑆. Substituting these values 

in equation (1), and we have 𝜇 = 0.0326, slightly less than the critical value 

https://www.stellarcatalog.com/
https://adg.univie.ac.at/schwarz/multiple.html
https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
https://www.stellarcatalog.com/stars/hd-126053
https://www.stellarcatalog.com/stars/hd-126053
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𝜇𝑐. Additionally, we identify five other systems with a mass parameter that 

falls below this critical value.  

Table 1. Some exoplanetary systems (Binary Star Systems) and their mass 

parameter (https://www.stellarcatalog.com/, 

https://adg.univie.ac.at/schwarz/multiple.html,https://exoplanetarchive.ipac.c

altech.edu/docs/counts_detail.html,https://www.stellarcatalog.com/stars/hd-

126053). 

 

Nr. 

Exoplanetary system 

name 

Primary 

mass 

(MS) 

Secondary 

mass (MS) 

Mass 

parameter 

𝜇  

Distance 

from the 

Sun (ly) 

1 15 Sagittae 1.1200 0.0660 0.0556 58.00 

2 HD 145825 1.0300 0.0600 0.0550 73.00 

3 HD 149825 1.0300 0.0600 0.0550 826.0 

4 HD 72946 0.9700 0.0660 0.0637 83.82 

5 HD 194667 0.9600 0.0670 0.0652 104.4 

6 HIP 70849 0.6300 0.0500 0.0735 79.00 

7 EPIC 247589423 

(K2-136) 

0.7400 0.1000 0.1190 194.0 

8 HD 177830 1.0700 0.7600 0.1370 205.0 

9 Luhman 16 0.0320 0.0270 0.4576 6.500 

10 Gliese 54 0.4300 0.3000 0.4110 26.90 

11 Kepler 14 1.5100 1.3900 0.4790 3196 

12 Kepler 1647 1.2200 0.9700 0.4430 3961 

13 Kepler 34 1.0480 1.0210 0.4930 4889 

14 Kepler 35 0.8880 0.8090 0.4770 5365 

15 Gliese 747 0.4000 0.4000 0.5000 27.00 

16 Gliese 185 0.5900 0.3700 0.3854 27.00 

17 HD 180617 0.4500 0.0780 0.1480 19.28 

18 2 MASS J18352-3123 0.2000 0.1000 0.3333 27.00 

https://www.stellarcatalog.com/
https://adg.univie.ac.at/schwarz/multiple.html
https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
https://www.stellarcatalog.com/stars/hd-126053
https://www.stellarcatalog.com/stars/hd-126053
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19 HD 188015 1.0900 0.2100 0.1610 32.00 

20 Sirius 2.0630 1.0180 0.3304 8.700 

21 TYC 398-1081-1 0.7000 0.2000 0.2222 28.00 

22 HD 189733 0.8000 0.2000 0.2000 63.60 

23 Gliese 618 0.4000 0.2000 0.3333 28.00 

24 HD 190360 1.0400 0.2000 0.1610 52.00 

25 WASP 85 1.0900 0.8800 0.4470 32.00 

26 WASP 94 1.2900 1.2400 0.4900 647.0 

27 HD 97101 0.6500 0.5400 0.4540 38.78 

28 GJ 676 AB 0.7100 0.1700 0.1930 53.65 

29 GJ 86 AB 0.8000 0.4900 0.3800 35.55 

30 HD 101930 0.7400 0.6700 0.4740 99.44 

31 XO-2 0.9800 0.9800 0.5000 489.2 

32 HD 106515 0.9100 0.8800 0.4920 114.8 

33 FW Tauri AB 0.2800 0.2800 0.5000 472.9 

34 g Cephei Ab B 1.1800 0.3200 0.2130 44.98 

35 GJ 3021 Ab B 0.9000 0.1300 0.1260 57.47 

36 GJ 338 AB 0.5910 0.5960 0.4980 20.65 

37 HD 106906 1.3000 1.3000 0.5000 300.1 

38 Gliese 65 (Luyten 

726-8) 

0.1220 0.1160 0.4874 8.741 

39 HD 222259 1.0100 0.8400 0.4540 143.9 

40 HD 109271 1.0500 0.6000 0.3640 182.6 

41 Chi 1 Orions 1.0290 0.1500 0.1272 28.00 

42 HD 114762 0.8400 0.1380 0.1410 128.7 

43 Gliese 3454 0.2000 0.1300 0.3939 28.00 
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44 HD 116029 1.5800 0.2600 0.1410 401.8 

45 61 Cygni 0.7000 0.6300 0.4737 11.42 

46 HD 13167 1.3500 0.2100 0.1350 32.00 

47 HD 142 1.2000 0.5900 0.3300 67.18 

48 HD 142022 0.9900 0.6000 0.3770 117.0 

49 Procyon 2.0500 0.6020 0.2270 11.40 

50 HD 16141 1.0100 0.2860 0.2210 117.1 

51 HD 1666 1.5000 0.3600 0.1940 385.8 

52 Struve 2398 0.3340 0.2700 0.4470 11.50 

53 HD 176071 1.0700 0.7600 0.4150 48.89 

54 Gliese 250 0.8000 0.5000 0.2174 29.00 

55 HD 195019 1.0600 0.6970 0.3970 121.8 

56 HD 196885 1.3300 0.5500 0.2930 107.6 

57 Groombridge 34 0.3980 0.1600 0.2867 12.00 

58 HD 197037 1.1100 0.3400 0.2350 107.6 

59 Gliese 745 0.3520 0.3480 0.4971 29.00 

60 HD 19994 1.3400 0.3500 0.2070 72.99 

61 HD 202772 1.6900 1.2100 0.4170 480.1 

62 SCR 1845-6357 0.0700 0.0300 0.3000 13.00 

63 HD 20782 1.0000 0.8400 0.4570 117.5 

64 LDS 169 0.4000 0.4000 0.5000 29.00 

65 HD 212301 1.2700 0.3500 0.2160 171.9 

66 HD 19994 1.3400 0.3500 0.2070 72.99 

67 Kruger 60 0.2710 0.1760 0.3937 13.00 

68 Ross 614 0.2230 0.1110 0.3323 13.00 

69 FL Virginis 0.1430 0.1310 0.4781 14.00 
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70 HD 202772 1.6900 1.2100 0.4170 480.1 

71 HD 20782 1.0000 0.8400 0.4570 117.5 

72 Gliese 15 0.3800 0.1500 0.2830 11.74 

73 HAT-P-32 AB 1.1760 0.4000 0.2540 1044 

74 55 Cnc Ab-fB 0.9500 0.1300 0.1200 42.46 

75 DP Leo AB 0.6900 0.0900 0.1150 1304 

76 HAT-P-33 AB 1.4030 0.5600 0.3840 1366 

77 HD 212301 1.2700 0.3500 0.2160 171.9 

78 Gliese 412 0.4800 0.1000 0.1724 16.00 

79 HD 213240 1.2200 0.1460 0.1070 132.9 

80 70 Ophiuchi 0.9000 0.7000 0.4375 17.00 

81 HD 217786 1.0200 0.1600 0.1360 181.3 

82 El Cancri 0.1100 0.1000 0.4762 17.00 

83 HD 222582 0.9900 0.3000 0.2330 137.0 

84 Stein 2051 0.6800 0.2200 0.2444 18.00 

85 HD 233832 0.7100 0.4200 0.3720 192.4 

86 Gliese 752 0.4600 0.0750 0.1402 19.00 

87 Eta Cassiopeiae 0.9720 0.5700 0.3696 19.00 

88 Furuhjelm 46 0.3200 0.2900 0.4754 19.00 

89 279 G. Sagittari 0.6500 0.2400 0.2697 20.00 

90 HD 23472 0.7500 0.1400 0.1570 127.5 

91 QY Aurigae 0.2260 0.1920 0.4593 20.00 

92 EQ Pegasi 0.4360 0.1710 0.2817 20.00 

93 HD 238090 0.5780 0.2300 0.2850 49.70 

94 Gliese 338 0.6900 0.6400 0.4812 21.00 

95 HD 27442 1.2000 0.7500 0.3850 59.03 
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96 Xi Bootis 0.8810 0.7000 0.4428 22.00 

97 HD 30856 1.3500 0.5400 0.2860 429.0 

98 Gliese 229 0.1550 0.0286 0.1558 22.00 

99 HD 38529 1.4800 0.3000 0.1690 138.0 

100 Gliese 829 0.2700 0.2700 0.5000 22.00 

101 HD 39855 0.8200 0.5300 0.3930 75.89 

102 Scholz 0.0950 0.0630 0.3987 22.00 

103 Gliese 880 0.5860 0.2000 0.2545 22.00 

104 LHS 6167 0.1300 0.1000 0.4348 24.00 

105 HD 4113 0.9900 0.5500 0.3570 137.0 

106 Gliese 831 0.2200 0.1200 0.3529 24.00 

107 HD 42936 0.8700 0.0800 0.0840 153.0 

108 HU Delphini 0.2370 0.1140 0.3248 24.00 

109 HD 46375 0.9100 0.5800 0.3890 96.50 

110 Gaia DR2 

67022420438837328

64 

0.1000 0.1000 0.5000 25.00 

111 HD 4732 1.7400 0.5300 0.2340 189.0 

112 HD 5278 1.1260 0.3000 0.2100 32.00 

113 Gliese 3991 0.5000 0.2000 0.2857 25.00 

114 Mu Cassiopeiae 0.7400 0.1700 0.1868 25.00 

115 Gliese 623 0.5100 0.0600 0.1053 26.00 

116 Gliese 257 0.2500 0.2400 0.4898 26.00 

117 Chi Draconis 1.0290 0.7300 0.4150 26.00 

118 p Eridani 0.8800 0.8600 0.4943 27.00 

119 WISE 1217+1626 0.0190 0.0110 0.3667 29.00 

120 FK Aquarii 0.4200 0.4200 0.5000 29.00 
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121 Gama Leporis 1.2300 0.8200 0.4000 29.00 

122 WT 460 0.1000 0.0800 0.4444 30.00 

123 Gliese 283 0.6200 0.2000 0.2439 30.00 

124 WISE 0458+6434 0.0143 0.0130 0.4762 30.00 

124 Gliese 1103 0.0950 0.0640 0.4025 30.00 

125 SDSS J1416+1348 0.0720 0.0300 0.2941 30.00 

126 66 G. Centauri 0.8890 0.4000 0.3103 30.00 

127 Wolf 1062 0.3700 0.1700 0.3148 31.00 

128 Gliese 3253 0.1670 0.0500 0.2304 32.00 

129 Gliese 680 0.4000 0.3000 0.4286 32.00 

130 289 G. Hydrae 0.8700 0.0800 0.0842 31.00 

131 HD 165131 1.0600 0.0178 0.0165 188.8 

132 HD 47127 1.0200 0.0200 0.0192 87.08 

133 HN Pegasi 1.0850 0.0270 0.0243 59.03 

134 HD 97334 1.1000 0.0350 0.0308 74.04 

135 Gliese 758 0.9660 0.0300 0.0314 50.88 

136 HD 126053 0.8900 0.0300 0.0326 57.08 

 

For 𝜇3 < 𝜇𝑐, we have stable trajectories for an astrophysical object around the 

Lagrange points. Substituting the values 𝑚1 = 0.89𝑀𝑆, 𝑚2 = 0.019 𝑀𝑆 and 

𝑚3 = 6.365 𝑀𝐽 (𝑀𝐽 = 1.898 × 10
27 kg is the mass of Jupiter) in equation 

(5), we find 𝜇3 = 𝜇𝑐 = 0.0385. So, the eigenvalues (Equations (10)) for this 

case are: 𝜆1,2 = ±0.7071𝑖 and 𝜆3,4 = ±0.7071𝑖. From these results we see 

that the eigenvalues are purely imaginary and the sum of all eigenvalues is 

zero. So, the Lagrange points L4 and L5 are neutrally stable fixed points. For 

𝑚3 > 6.365 𝑀𝐽, we have 𝜇3 > 𝜇𝑐, and the Lagrange points are unstable. 

Thus, if 𝜇𝑐 < 𝜇 < 0.5, then 𝐿4 and 𝐿5 are unstable (Gabern & Jorba, 2001).  

Sicardy (2010) shows that between 𝜇𝑐 and 𝜇 ≈ 0.039 the L4 and L5 points are 

globally stable in the sense that a particle released at those points at zero 
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velocity (in the co-rotating frame) remains in the vicinity of those points for 

an indefinite time. Also, he shows elsewhere that there exists a family of stable 

periodic orbits surrounding L4 or L5 for 𝜇 ≥ 𝜇𝑐 (Fawzy & Abd El-Salam, 

2012). The global stability of these points has been studied by several authors, 

such as Leontovich (1962), Deprit and Deprit-Barthlom𝑒́ (1967), Markeev 

(1969), Szebehely (1979), Narayan and Ramesh (2008), Singh (2011) and 

Shankaran et al., etc. (2011). Their final conclusion is that in the planar case, 

the Lagrange points L4 and L5 are always stable within some domain of mass 

ratio (mass parameter) which is modified when including such kinds of 

different perturbations (Fawzy & Abd El-Salam, 2012).  

The linearized system characteristic equation (9) processes four complex roots 

and a bifurcation at 𝑚3 = 6.365 𝑀𝐽 (see Figure 2). This corresponds to the 

critical value of the mass parameter of the system, μc = 0.0385. For μ < μc, the 

linearized system has distinct eigenvalues lying on the imaginary axis 𝜆 =

±𝑖𝜔1, ±𝑖𝜔2 where 0 < 𝜔2 <
√2

2
< 𝜔1 < 1. As the mass parameter 

approaches μc, these imaginary eigenvalues converge into a pair of identical 

eigenvalues (see Equations (10) at the critical point where 𝜇 = 𝜇𝑐. Finally, for 

𝜇 > 𝜇𝑐, the eigenvalues become complex and are symmetric about the 

imaginary axis such that some of the eigenvalues include a positive real part 

𝜆 = ±𝑎 ± 𝑖𝑏 (Duffy, 2012).  

Now the main purpose of this paper is to numerically integrate the nonlinear 

system (2) and we will present the results in the phase plane. The phase plane 

is important for studying nonlinear systems. The phase plane is a method for 

visualizing the characteristics of these systems, and it is a two-dimensional 

case of the three-dimensional phase space.  

Figures 3 – 6 show several trajectories around the Lagrange points L4 and L5 

for different values of the mass of an astrophysical object near these points. 

Initial conditions in the nondimensional form for the coordinate and velocity 

are: 𝑥0 = 0.484; 𝑦0 = 0.855; 𝑧0 = 0 and �̇�0 = 𝑣𝑥0 = 0; �̇�0 = 𝑣𝑦0 =

0.0059; �̇�0 = 𝑣𝑧0 = 0, respectively. For all the cases presented in these 

Figures, we used these initial conditions. The only change we made was the 

mass of the third body, to see how the trajectory of this body changes in the 

phase plane. This is the reason why we keep the same initial conditions for the 

coordinate and velocity. We take these initial conditions to have non-chaotic 

orbits around the Lagrange points L4 and L5. If these initial conditions change 

very little, then the orbits become chaotic. Figure 3, presents the positions of 
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the Lagrange points L4 and L5 (in blue and red, respectively), and the positions 

of the two stars, HD 126053 A and HD 126053 B (in yellow and pink, 

respectively). Also, this Figure shows two nonlinear orbits around the 

Lagrange points L4 and L5 for 𝑚3 = 𝑀𝐸 , where 𝑀𝐸 is the mass of the Earth.   

Figure 4 shows two nonlinear trajectories around the Lagrange points L4 and 

L5 for 𝑚3 = 𝑀𝐽. From the numerical experiment, we see that these 

configurations are stable for a very long time of integration. We can also 

present this result in the phase plane (𝑥, 𝑣𝑥), and (𝑦, 𝑣𝑦), respectively, as in 

Figure 5.  

Figure 6 shows two nonlinear orbits around the Lagrange points L4 and L5 for 

𝑚3 = 6.365𝑀𝐽 (in this case we have 𝜇3 = 𝜇𝑐). In this case, we are not sure if 

this configuration will be stable for a very long time. However, from a 

numerical experiment we performed for a relatively large integration time, we 

see that this configuration was stable. Figure 7 shows a nonlinear trajectory 

around the Lagrange points L5 for 𝑚3 = 8.22 𝑀𝐽 (in this case we have 𝜇3 >

𝜇𝑐). This configuration is not stable, but the orbit around L5 becomes spiral 

and the third body moves away from the gravitational field of the HD 126053 

system.  
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Figure 2. Bifurcation of the HD 126053 system for 𝜇3 = 𝜇𝑐 = 0.0385.  
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Figure 3. Nonlinear stable orbits around the Lagrange points L4 and L5 of an 

astrophysical object with the mass of a terrestrial planet. 
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Figure 4. Nonlinear stable orbits around the Lagrange points of an 

astrophysical object for 𝑚3 = 𝑀𝐽. 
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Figure 5. Phase-plane about L4 and L5. 
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Figure 6. Nonlinear stable orbits around the Lagrange points of an 

astrophysical object with mass 𝑚3 = 6.365 𝑀𝐽. 
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Figure 7. Nonlinear unstable orbit around L5 of an astrophysical object with 

mass 𝑚3 = 8.22 𝑀𝐽. 

 

These results and the study of the nonlinear dynamics around the Lagrange 

points L4 and L5 are very important and can help us better understand the 

dynamics of the movement of celestial bodies in the HD 126053 system.  

Conclusions   

In this study, we have analysed the binary star system HD 126053, which has 

a mass parameter very close to 𝜇𝑐. By calculating the mass parameter for 136 

binary star systems, we observed that only six of them have this parameter 

smaller than 𝜇𝑐. Thus, in these six binary star systems we expect astronomical 

objects in stable orbits around the respective Lagrange points L4 and L5. These 

systems are: HD 126053, Gliese 758, HD 97334, HN Pegasi, HD 47127, HD 

165131. No celestial body has yet been discovered in any of these systems, 

and we predict that in one of them there is a high chance to observe such stable 

trajectories.  
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Through current instruments, it is difficult to detect celestial bodies such as 

exomoons, extrasolar comets, rings around exoplanets, and trojan 

astrophysical objects near the Lagrange points L4 and L5 in exoplanetary 

systems. Therefore, in this study, based on the model of the Circular Restricted 

Three Body Problem, Linear Stability Analysis, and Nonlinear Stability 

Analysis we strongly believe in the existence of stable trajectories of trojans 

around the Lagrange points within at least one of the above-mentioned 

exoplanetary systems. We calculate the mass of this astrophysical object 

(group of Trojan astrophysical objects) is from a very small Trojan asteroid to 

6.365 𝑀𝐽. This large mass can be detected with conventional methods, thus 

increasing the possibility for an imminent discovery in the near future.   

This study constitutes a contribution to the domain of exoplanetary dynamics, 

providing original insights into the motion of celestial bodies within the HD 

126053 system near to the Lagrange points L4 and L5. 

Contributions of the authors 

The contributions of the first author are: study conception, data collection, 

writing code in MATLAB® Software and performing calculations, analysis 

and interpretation of results, wrote the paper and manuscript preparation. 

The contribution of the second author is the control of the calculations and the 

manuscript.  

The contribution of the third author resides primarily in the recommendation 

of the astrophysical objects that are central in this research. 

Acknowledgment 

The authors would like to thank Professors: Margarita Ifti and Dode Prenga 

for their suggestions.  

 

References  

Bhanu K., Rodney L. Anderson, Rafael de la Llave (2019), High-Order Resonant Orbit 

Manifold Expansions for Mission Design in the Planar Circular Restricted 3-Body Problem, 

70th International Astronautical Congress, Washington D.C., United States, 21-25 October 

2019.  

Blaga et al., 2021, Jacobi Stability Analysis of the Classical Restricted Three Body Problem. 

http://arxiv.org/abs/2104.02432v1. 

Caitlin McCann (2013). Bifurcation Analysis of Non-linear Differential Equations. University 

of Liverpool. http://www.maths.liv.ac.uk/~bnvasiev/Past%20students/Caitlin_399.pdf.  

http://arxiv.org/abs/2104.02432v1


172                                                                                             JNS 36/2024 

 
Chang, L., Lu, D. (2019), Stabilization of Lagrange points in circular restricted three-body 

problem: A port-Hamiltonian approach. Volume 383, Issue 16, pp. 1907-1914.  

Demirel, Y., Gerbaud, V. (2019): Nonequilibrium Thermodynamics, Transport and Rate 

Processes in Physical, Chemical and Biological Systems. Fourth Edition, 2019. Chapter 12–

Stability analysis. pp. 573-602.   

Deprit, A. and A. Deprit-Bartholome, (1967). Stability of the triangular lagrangian points. 

Astron. J., 72: 173-179.  

Duffy, B., (2012) “Analytical Methods and Perturbation Theory for the Elliptic Restricted 

Three-Body Problem of Astrodynamics”, May 20, 2012. 

Euler, L.: Considerationes de motu corporum coelestium. Novi Commentarii Academiae 

Scientiarum Petropolitanae 10, 544 (1764).  

Euler, L. : Considérations sur le problème des trois corps. Mém. de Lacad. d. Sc. de Berlin 19, 

194 (1763). 

Euler, L.: De motu rectilineo trium corporum se mutuo attrahentium. Novi Commentarii 

Academiae Scientiarum Petropolitanae 11, 144 (1765). 

Fabao Gao & Yongqing Wang, Approximate Analytical Three-Dimensional Multiple Time 

Scales Solution to a Circular Restricted Three-Body Problem. Advances in Astronomy. 

Volume 2020, Article ID 8868137, 10 pages.  

Fawzy A, Abd El-Salam, (2012) “Discovery of an Equilibrium Circle in the Circular 

Restricted Three Body Problem”, American Journal of Applied Sciences 9 (9): 1378-1384, 

2012 ISSN 1546-9239 © 2012 Science Publication.  

Gabern F., and A. Jorba, A., (2001) “A restricted four-body model for the dynamics near the 

lagrangian points of the sun-jupiter system”, Discrete and continuous, Volume 1, Number 2, 

May 2001.  

Gascheau G., (1843) C. R. Acad. Sci. Paris, 16, 393. 

Gheorghe Sirbu, Mauro Leonardi (2023). Fully Autonomous Orbit Determination and 

Synchronization for Satellite Navigation and Communication Systems in Halo Orbits. Remote 

Sens. 15, 1173.https://doi.org/10.3390/rs15051173.  

Haoze T., (2019). Koopman Reduced Order Control for Three-Body Problem. Modern 

Mechanical Engineering, 9, 20-29 http://www.scirp.org/journal/mme ISSN Online: 2164-

0181 ISSN Print: 2164-0165. 

Hippke M., and Angerhausen, D., (2015), A Statistical Search for A Population of Exo-Trojans 

In the Kepler Data Set, The Astrophysical Journal, 811:1 (5pp), 2015 September 20, 

http://dx.doi.org/10.1088/0004-637X/811/1/1.  

https://adg.univie.ac.at/schwarz/multiple.html.   

https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html. 

https://www.spaceacademy.net.au/library/notes/lagrangp.htm. 

https://www.stellarcatalog.com/. 

http://www.scirp.org/journal/mme
http://dx.doi.org/10.1088/0004-637X/811/1/1
https://adg.univie.ac.at/schwarz/multiple.html
https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
https://www.stellarcatalog.com/


173                                                                                             JNS 36/2024 

 
https://www.stellarcatalog.com/stars/hd-126053. 

Hysa, A. (2024). Non-linear dynamics of a test particle near the Lagrange points L4 and L5 

(Earth-Moon and Sun-Earth case). EUREKA: Physics and Engineering, (1), 3-10. 

https://doi.org/10.21303/2461-4262.2024.002949. 

Hysa, A. (2024a). A study of the nonlinear dynamics inside the exoplanetary system Kepler-

22 using MATLAB® software. EUREKA: Physics and Engineering, (2), 3-12. 

https://doi.org/10.21303/2461-4262.2024.003257.  

Hysa, A. (2024b). Study of the resonant motion of a test particle inside Kepler 69 using 

circular restricted three body problem. Technology Transfer: Fundamental Principles and 

Innovative Technical Solutions, 34-37. https://doi.org/10.21303/2585-6847.2024.003563. 

Idrisi, J., M., Haruna, S., Eshetie, T. (2023), Noncollinear equilibrium points in CRTBP with 

Yukawa – like corrections to Newtonian potential under an oblate primary model. Advances 

in Astronomy, Volume 2023, Article ID 4932794, 11 pages. 

https://doi.org/10.1155/2023/4932794. 

John H. Mathews and Kurtis K. Fink (2004). Numerical Methods Using Matlab, 4th Edition, 

ISBN: 0-13-065248-2.  

Korneev A., and Aksenov S., (2020), Calculation of libration point orbits in the circular 

restricted three-body problem. Journal of Physics: Conference Series 1740 (2021) 012019 IOP 

Publishing doi:10.1088/1742-6596/1740/1/012019. 

Kumar, R., Kushvah, B., S., Kumar Pal A., (2024), Dynamics of the perturbed restricted three-

body problem with quantum correction and modified gravitational potential. Archive of 

Applied Mechanics (2024) 94:651-665. http://dx.doi.org/10.1007/s00419-024-02543-3. 

Kumar, V., Gupta B., R., & Aggarwal R., (2017). Numerical Simulation of the Phase Space of 

Jupiter-Europa System Including the Effect of Oblateness. Vol. 12, Issue 1, pp. 479 – 495.  

Lagrange, J.L. : Essai sur le problème des trois corps, 229. In: Serret, J.-L. (ed.) Œuvres de 

Lagrange, Tome sixième, Gauthier-Villard, Paris (1873).  

Langford A., and Lauren M. Weiss (2023). A Dynamical Systems Approach to the Theory of 

Circumbinary Orbits in the Circular Restricted Problem. ArXiv:2302.00580v1 [astro-ph.EP] 

1 Feb 2023. https://doi.org/10.48550/arXiv.2302.00580. 

Leleu, A., Robuetel, P., Correia A. C. M. and Lillo-Box, J. (2015), Detectability of quasi-

circular co-orbital planets. Application to the radial velocity technique, A&A 581, A128 

(2015).  

Leleu, A., Robuetel, P., Correia A. C. M., and Lillo-Box, J. (2017), Dedection of co-orbital 

planets by combining transit and radial-velocity measurements, A&A 599, L7 (2017). 

https://doi.org/10.1051/0004-6361/201630073.  

Leontovich, A.M., 1962. On the stability of the restricted problem of three bodies. Soviet 

math. Dokl., 3: 425-428. 

Li X., Shijun L., (2017). More than six hundred new families of Newtonian periodic planar 

collisionless three-body orbits". Science China Physics, Mechanics & Astronomy. Vol. 60 No. 

https://www.stellarcatalog.com/stars/hd-126053
https://doi.org/10.21303/2461-4262.2024.002949
https://doi.org/10.21303/2461-4262.2024.003257
https://doi.org/10.1155/2023/4932794
http://dx.doi.org/10.1007/s00419-024-02543-3
https://doi.org/10.48550/arXiv.2302.00580
https://doi.org/10.1051/0004-6361/201630073


174                                                                                             JNS 36/2024 

 
12: 129511 doi: 10.1007/s11433-017-9078-5. http://dx.doi.org/10.1007/s11433-017-9078-5 . 

Li X., Yipeng J., and Shijun L. (2017), The 1223 new periodic orbits of planar three-body 

problem with unequal mass and zero angular momentum. arXiv:1709.04775v1 [nlin.CD] 13 

Sep 2017. https://doi.org/10.48550/arXiv.1709.04775. 

Liao at al., 2022. Three-body problem - from Newton to supercomputer plus machine 

learning, New Astronomy 96, 101850. http://arxiv.org/abs/2106.11010v2. 

Markeev, A.P., 1969. On the stability of the triangular libration points in the circular bounded 

three-body problem. J. Applied Math. Mech., 33: 105-110. DOI: 10.1016/0021-

8928(69)90117-8.  

Marzari, F., Scholl, H., Murray, C., et al. 2002, in Origin and Evolution of Trojan Asteroids, 

ed. W. F. Bottke (Tucson: Univ. Arizona Press).  

Moraes et al., 2023. The Dynamics of Co-orbital Giant Exomoons - Applications for the 

Kepler-1625 b and Kepler-1708 b Satellite Systems. arXiv:2301.10730v2 [astro-ph.EP] 27 

Jan 2023. 

Morgan, Robert (2015) "Linearization and Stability Analysis of Nonlinear Problems," Rose-

Hulman Undergraduate Mathematics Journal: Vol. 16: Iss. 2, Article 5. Available at: 

https://scholar.rose-hulman.edu/rhumj/vol16/iss2/5.  

Murray C., D., and Dermott. S., F., 1999, Solar System Dynamics. Cambridge University 

Press, 1st edition, 1999. ISBN: 0521 57295 9.  

Narayan, A. and C. Ramesh, 2008. Stability of triangular points in the generalized restricted 

three body problem. J. Mod. Ex-B, France.  

Newton, I (1687). Philosophiæ naturalis principia mathematica (Mathematical Principles of 

Natural Philosophy). London: Royal Society Press, 1687.  

Nipoti, C., 2018, The circular restricted three body problem, Celestial Mechanics, Universita 

di Bologna (2018).  

Robutel P., and Leleu A. (2024), Trojan Exoplanets, arXiv:2402.15168v1 [astro-ph.EP] 23 

Feb 2024.  

S. H. Strogatz (2018). Nonlinear Dynamics and Chaos with Applications to Physics, Biology, 

Chemistry, and Engineering.  

Shankaran, S., J.P. Sharma and B. Ishwar, 2011. Equilibrium points in the generalised 

photogravitational non-planar restricted three body problem. Int. J. Eng., Sci. Technol., 3: 63-

67.  

Sharmin et al., 2021. A Study on Numerical Solution of Initial Value Problem by Using Euler’s 

Method, Runge-Kutta 2 nd Order, Runge-Kutta 4th Order, and Runge-Kutta Fehlberg Method 

with MATLAB. International Journal of Scientific & Engineering Research Volume 12, Issue 

3, March-2021 ISSN 2229-5518. https://www.researchgate.net/publication/376799308. 

Sicardy, B., (2010). Stability of the triangular Lagrange points beyond Gascheau’s value. 

Celest Mech Dyn Astr (2010) 107:145–155 DOI 10.1007/s10569-010-9259-5.  

http://dx.doi.org/10.1007/s11433-017-9078-5
https://doi.org/10.48550/arXiv.1709.04775
http://arxiv.org/abs/2106.11010v2
https://www.researchgate.net/publication/376799308


175                                                                                             JNS 36/2024 

 
Singh, J., 2011. Nonlinear stability in the restricted three-body problem with oblate and 

variable mass. Astrophys Space Sci., 333: 61-69. DOI: 10.1007/s10509-010-0572-y.  

Stephanie et al. 2019, Rendezvous Strategies in the Vicinity of Earth-Moon Lagrangian 

Points. Frontiers in Astronomy and space Sciences. ORIGINAL RESEARCH published: 22 

January 2019 https://doi.org/10.3389/fspas.2018.00045. 

Svetlana, G., (2017). Appendix A Runge-Kutta Methods (PDF). Munster Institute for 

Theoretical Physics. pp. 8–11. Retrieved 4 March 2022.  

Szebehely, V.G., 1979. Instabilities in Dynamical Systems: Applications to Celestial 

Mechanics. 1st Edn., D. Reidel Pub. Co., Dordrecht, ISBN: 9027709734, pp: 314.  

Truesdale, N., (2012) Using Invariant Manifolds of the Sun-Earth L2 Point for Asteroid 

Mining Operations, ASEN 5050 Spaceflight Dynamics 12/19/2012.  

Yan H. (2020), Port-Hamiltonian Based Control of the Sun-Earth 3D Circular Restricted 

Three-Body Problem: Stabilization of the L1 Lagrange Point. Modern Mechanical 

Engineering, 2020, 10, 39-49. https://doi.org/10.4236/mme.2020.103005. 

Zeidler E., (1990). Nonlinear Functional Analysis and Its Applications. ISBN 978-1-4612-

6971-7 ISBN 978-1-4612-0985-0 (eBook) DOI 10.1007/978-1-4612-0985-0. 

Zotos E., E., (2015). How does the oblateness coefficient influence the nature of orbits in the 

restricted three-body problem? arXiv:1508.05209v1 [astro-ph.EP].  

 

https://doi.org/10.3389/fspas.2018.00045
https://doi.org/10.4236/mme.2020.103005

