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Abstract 

Prediction models play a critical role in understanding dynamic 

relationships within energy markets, providing insights into price 

fluctuations and trading volumes. By capturing these complex interactions, 

advanced forecasting techniques enable better decision-making and 

strategic planning. The establishment of the Albanian Power Exchange 

(ALPEX) has introduced a structured energy market in Albania, fostering 

transparency and competitiveness in electricity trading. This study focuses 

on modelling energy market dynamics in Albania by analysing key 

indicators, including Market Clearing Prices (MCP), energy volumes 

traded, and energy production and consumption. Using daily data from May 

2023 to May 2024, the study employs both statistical and machine learning 

models to forecast MCP as a univariate time series. By comparing the 

predictive performance of traditional statistical approaches such as ARIMA 

with advanced machine learning techniques like XGBoost and Neural 

Network Autoregressive, the research aims to identify the most accurate 

methodologies for forecasting MCP. The findings aim to guide stakeholders 

in utilizing data-driven models for market analysis and strategic 

development. 

Key words: energy, market, seasonal, statistical analysis, demand, 

production.  

Përmbledhje 

Modelet e parashikimit luajnë një rol kritik në kuptimin e marrëdhënieve 

dinamike brenda tregjeve të energjisë, duke ofruar njohuri mbi luhatjet e 

çmimeve dhe vëllimet e tregtimit. Duke kapur këto ndërveprime komplekse, 
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teknikat e avancuara të parashikimit mundësojnë vendimmarrje dhe 

planifikim strategjik më të mirë. Krijimi i Bursës Shqiptare të Energjisë 

(ALPEX) ka prezantuar një treg të strukturuar energjie në Shqipëri, duke 

nxitur transparencën dhe konkurrencën në tregtimin e energjisë elektrike. Ky 

studim fokusohet në modelimin e dinamikave të tregut të energjisë në 

Shqipëri duke analizuar treguesit kryesorë, qe përfshijnë çmimet kleruese të 

tregut, vëllimet e energjisë të tregtuara si dhe prodhimin e konsumin e 

energjisë. Duke përdorur të dhëna ditore nga Maji 2023 deri në Maj 2024, 

studimi përdor modele statistikore dhe algoritme machine learning për të 

parashikuar çmimet kleruese të tregut. Duke krahasuar saktësinë e modeleve 

parashikuese statistikore tradicionale si ARIMA me modelet e avancuara 

machine learning si XGBoost dhe Neural Network Autoregressive, studimi 

synon të identifikojë metodologjitë më të sakta për parashikimin e çmimit 

klerues të tregut. Rezultatet synojnë të drejtojnë palët e interesuara në 

përdorimin e modeleve të bazuara nga të dhënat për analizën e tregut dhe 

zhvillimin strategjik. 

Fjalë kyçe: energji, treg, sezonalitet, analizë statistikore, kërkesë, prodhim. 

1. Introduction 

The energy market in Albania has undergone significant transformations in 

recent years, driven by the liberalization of energy policies, integration into 

regional markets, and the increasing importance of renewable energy 

sources. Albania’s energy sector is characterized by a high reliance on 

renewable energy, particularly hydropower, which accounts for around 95% 

of the country’s electricity generation. Albania is working toward the full 

liberalization of its energy market, allowing for the separation of generation, 

transmission, and distribution activities. The Albanian Power Exchange 

(ALPEX) was officially established in October 2020 through the signing of 

a shareholder agreement1 between Albania's Transmission System Operator 

(OST) and Kosovo's Transmission System Operator (KOSTT).  

This agreement marked a significant step towards the creation of a joint 

electricity market between the two countries. It operates the day-ahead and 

intra-day markets for both countries, promoting market coupling and 

                                                 

1 https://alpex.al/corporate/governance/ 

https://alpex.al/corporate/governance/
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integration with neighbouring markets in line with EU regulations. ALPEX 

aims to enhance market transparency, facilitate cross-border trading, and 

improve energy security through regional cooperation and real-time data on 

prices and volumes. These developments have heightened the need for 

accurate forecasting models to ensure market stability, optimize resource 

allocation, and support decision-making for stakeholders. Traditional 

statistical models have been used for a long time in energy market analysis, 

but the complexity and volatility of modern electricity markets demand more 

advanced methodologies.  

This study aims to explore the dynamics of Albania's energy market by 

employing a comparative analysis of advanced forecasting techniques, 

including statistical, machine learning, and hybrid models. By evaluating 

their predictive accuracy and applicability in the context of Albania's unique 

energy landscape, this research seeks to provide actionable insights for 

improving market efficiency and fostering sustainable energy practices. 

Over the years, significant advancements have been made in electricity price 

forecasting, reflecting the evolving complexity of energy markets and the 

increasing need for precise predictive models. Early work by (Contreras et 

al., 2003), established the foundation using ARIMA models to predict next-

day electricity prices with hourly data from the Spanish power market. This 

study highlighted the effectiveness of statistical methods in capturing 

temporal patterns and seasonal effects, establishing a baseline for forecasting 

methodologies. Advancing from this point, (Singhal & Swarup, 2011) 

demonstrated the potential of artificial neural networks (ANNs) for 

electricity price forecasting.  

By employing a feedforward neural network with backpropagation, their 

study illustrated the ability of ANNs to model nonlinear relationships and 

adapt to the volatility of energy markets, using data from the Indian market. 

Moving the field forward, (Yan & Chowdhury, 2013) introduced a hybrid 

approach by integrating Least Squares Support Vector Machines (LSSVM) 

with ARMAX models for mid-term market clearing price forecasting. Their 

framework emphasized the importance of hybrid models in leveraging the 

strengths of complementary techniques, effectively addressing both linear 

and nonlinear features in price data. Moreover, (Yang et al., 2017) combined 

wavelet transforms, ARMA, and kernel-based extreme learning machines, 
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achieving notable improvements in accuracy for complex and high-

frequency electricity price data.  

Their innovative methodology underscored the value of hybrid models in 

handling intricate data dynamics. While these studies primarily focused on 

methodological advancements, (Hong et al., 2020) provided a broader 

perspective by offering a comprehensive review of energy forecasting 

methodologies. They identified emerging trends, such as the integration of 

data-driven approaches with domain expertise and outlined future directions 

for research. Adding a market-specific dimension, (Pinhão et al., 2022) 

explored electricity spot price forecasting by modelling supply and demand 

curves. Their work highlighted the critical role of incorporating market 

dynamics and behavioural patterns into predictive models, offering a more 

holistic understanding of price movements. In the context of the German 

market, (Poggi et al., 2023) presented a comparative analysis of statistical 

and deep learning methods. Their study balanced interpretability and 

precision, using traditional models like ARIMA and GARCH as benchmarks 

while deploying Recurrent Neural Networks (RNNs), Long Short-Term 

Memory (LSTM) networks, and hybrid architectures to address 

nonlinearities and temporal dependencies in price data. Moving focus to 

renewable energy, (Gjika et al., 2019) evaluated hybrid models for 

forecasting water inflows in Albania.  

Their work demonstrated the applicability of hybrid techniques for 

renewable energy forecasting, underscoring the importance of tailored 

solutions for unique market structures. In a later study (Gjika et al., 2021) 

analysed the impact of climatic factors on hydropower energy production in 

the Drin River cascade in Albania, focusing on seasonal patterns. Various 

models, including ARIMA, ETS, TBATS, STLM, and neural networks, were 

tested, with neural networks effectively capturing seasonality and providing 

accurate monthly energy forecasts. The authors acknowledged the inherent 

uncertainty and emphasized the potential of hybrid models for improved 

predictions. Classical time series and deep learning models for short- and 

medium-term energy load prediction, using three years of hourly and daily 

data was presented by (Gjika & Basha, 2022). Average temperature was 

included as an external variable, with load dynamics correlated to 

temperature. Models were evaluated using accuracy metrics (MSE, RMSE, 
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MAPE, AIC, BIC) and statistical test graphics, showing competitive 

performance.  

The findings provided insights for stakeholders to optimize energy 

management and forecasting. Expanding on this, (Benti et al., 2023) 

reviewed recent advancements in machine learning and deep learning for 

renewable energy generation forecasting, emphasizing their adaptability and 

predictive accuracy. Advanced methods were also presented by (Qosja et al., 

2024a; 2024b) where they compare machine learning approaches—Radial 

Basis Function (RBF), feedforward neural networks, and recurrent neural 

networks—for forecasting daily electricity consumption in Tirana and 

extended to five regions in Albania. Performance was evaluated across four 

scenarios involving different training/testing splits, historical data usage, and 

hyperparameter optimization. Results show that the RBF ARX model 

outperformed others in accuracy and computational efficiency, highlighting 

its effectiveness for electricity consumption forecasting. 

Collectively, these studies form a robust framework for understanding and 

improving energy market dynamics. They underscore the necessity of 

combining statistical, machine learning, and hybrid approaches, particularly 

in regions like Albania, where distinct market structures and renewable 

energy potentials require customized forecasting strategies. 

1.1 Data 

In our work we use daily time series data of energy load, production, market 

clearing prices and total energy volumes traded for a period of one year (May 

2023-May 2024). The dataset includes 366 days with no missing values or 

outliers. Daily energy load (consumption), production and total volumes are 

measured in MWh, while market clearing prices are measured in Euro/MWh. 

Load and production energy hourly data are taken from Transmission System 

Operators of Albania, while hourly market clearing prices and total energy 

volumes traded in the day-ahead market are obtained from ALPEX2. Hourly 

data from ALPEX is published daily in Excel files. The files are processed 

and merged to extract the necessary indicators, with the hourly data further 

aggregated into daily summaries. 

                                                 

2 https://alpex.al/day-ahead-market/  

https://alpex.al/day-ahead-market/
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Figure 1. (a) Market electricity prices over time; (b) Monthly total energy 

volumes traded (blue bars) vs electricity prices (red line) 
Source: Authors 

 

Daily market electricity price lacks clear patterns, making it unpredictable 

and challenging to forecast. Related to total volumes traded we can observe 

from Figure 1(b) that lower MCP values typically occur in winter months 
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with higher energy production due to rainfall and snow melting. Higher MCP 

values correspond to lower energy volumes traded (July-October), 

suggesting that when supply is constrained, prices rise.  

This pattern aligns with the basic economic principle of supply and demand, 

where reduced supply leads to price increases, and abundant supply drives 

prices down.  

 

Figure 2. Daily energy load and production over time (Period: May 2023 to 

May 2024) Source: Authors 

In Figure 2, time series data for electricity load and production shows strong 

seasonality influenced by summer and winter patterns. During summer, 

energy demand increases due to the widespread use of cooling systems, 

while production may decline, due to the reliance on hydropower, as reduced 

rainfall lowers water availability. In contrast, winter sees both high demands, 
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driven by heating needs and shorter daylight hours, and higher production, 

as increased precipitation boosts hydropower. These seasonal imbalances 

between supply and demand significantly affect market dynamics, leading to 

price fluctuations and requiring careful forecasting and grid management to 

ensure stability.  

1.2 Relationship between variables 

There are periods during a year when we have more demand than supply or 

otherwise. We have calculated the energy balance and we added a categorical 

variable in the dataset which takes three values: Deficit when the difference 

between production and load is negative; Surplus when the difference is 

positive; Balanced when the difference is equal. We are interested to see the 

relationships between electricity price with load and production during the 

periods of deficit and surplus. 
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Figure 3. (a) Correlation between MCP and load; (b) Correlation between 

MCP and production, during different periods of deficit and surplus 
Source: Authors 

As observed in Figure 3(a), during periods of electricity deficit, when 

demand for power increases significantly, there is a corresponding rise in 

electricity prices. This phenomenon occurs due to the stronger competition 

for limited energy resources, which drives prices upward. On the other hand, 

during periods of energy surplus, when supply exceeds demand, electricity 

prices generally remain more stable or even decrease. However, if demand 

increases alongside production during energy surplus, (Figure 3(b)), the 



300                                                                                                               JNS 36/2024 

 

 

effect on price may be neutral or even positive, as the equilibrium price 

depends on both supply and demand. These dynamics underscore the 

complex relationship between supply, demand, and pricing in the electricity 

market. 

High-demand periods often coincide with peak consumption hours or 

extreme weather events, where the balance between supply and demand 

becomes tense. Studying electricity prices under these conditions allows us 

to evaluate how efficiently the market responds to stress and understand the 

pricing mechanisms that influence consumer behaviour. 

In order to see the correlation between different variables we use a 

correlation funnel plot, which is a data visualization technique used to 

identify the strength and direction of relationships between variables. 

Numeric data are binned into categorical data, then all categorical data is 

one-hot encoded to produce binary features. Our goal is to analyse the 

relationship between binary features (such as months, periods of deficit or 

surplus, and particularly price) and the target variable, which represents high 

electricity demand. 

 

Figure 4. Correlation funnel between different variables 
Source: Authors 

As observed in Figure 4, when the energy load exceeds 913.115 MWh, there 

is a positive correlation with the winter months (December, January and 
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February). These months correspond to surplus in electricity balance, 

because of the increased rainfall that supports hydropower generation. The 

higher energy load, indicative of increased demand, also aligns with 

electricity prices exceeding 106.895 Euro/MWh.  

2. Methodology 

The methodology of this study combines classical statistical modelling with 

advanced machine learning techniques for electricity price forecasting. We 

use the Autoregressive Integrated Moving Average (ARIMA) model, known 

for capturing seasonality and trends in time series data, alongside the 

Extreme Gradient Boosting (XGBoost) model, which handles non-linear 

relationships and complex interactions. Additionally, we apply the NNAR 

(Neural Network AutoRegressive) model designed to uncover intricate 

dependencies and dynamic patterns in time series data. By combining lagged 

observations as inputs with the flexibility of neural networks, it is 

particularly effective for modelling seasonal trends and handling non-

stationary data, making it a valuable tool in energy forecasting. The dataset 

was organized into training (80% of data) and testing (20% of data). The 

models’ performance is compared through accuracy metrics. 

2.1 ARIMA model 

The ARIMA methodology, introduced by Box and Jenkins (1976), is a 

statistical approach designed to analyse and build forecasting models that 

effectively represent time series data. By capturing the underlying 

correlations within the data, ARIMA models (Weiss, 2000; Hyndman & 

Athanasopoulos, 2018) offer a robust framework for time series prediction. 

Notably, these models rely solely on historical data from the time series, 

enabling them to generalize forecasts and enhance predictive accuracy while 

maintaining simplicity and efficiency. The complete ARIMA model can be 

expressed as: 

𝑦𝑡
(𝑑)

= 𝑐 + 𝜀𝑡 + 𝜙1𝑦𝑡−1
(𝑑)

+ ⋯ + 𝜙𝑝𝑦𝑡−𝑝
(𝑑)

+ 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑝𝜀𝑡−𝑝 

(1) 

Where 𝑦𝑡 is the observed time series at time t, 𝜙1 is the autoregressive 

coefficient, 𝜃1 is the moving average coefficient, 𝜀𝑡 is white noise error term 

at time t and d is the degree of differencing to achieve stationarity. 
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2.2 STL+ARIMA model 

Statistical approaches like ARIMA, artificial neural networks (ANNs), and 

machine learning techniques have been widely used in energy forecasting. 

(Leite Coelho da Silva et al., 2022; Karabiber & Xydis, 2019) have used 

statistical and deep learning methods for load and price electricity forecasts. 

Another method used among researchers is STL + ARIMA model, a hybrid 

approach that combines the strengths of seasonal decomposition and time 

series forecasting. The STL (Seasonal and Trend decomposition using 

LOESS) method decomposes the time series into three components: 

seasonality, trend, and residuals, allowing each component to be analysed 

and modelled separately. The residual (remainder) component, which 

contains the irregular and non-seasonal variations, is then modelled using an 

ARIMA (Autoregressive Integrated Moving Average) model to capture 

linear dependencies and make forecasts. This combination allows STL + 

ARIMA to effectively handle complex seasonal patterns and trends, 

providing accurate forecasts for time series with strong seasonal structures. 

2.3 XGBoost Model 

XGBoost is an effective tree-based ensemble learning algorithm. It is based 

on gradient boosting architecture (Chen & Guestrin, 2016; Bentéjac et al., 

2020), which uses various complement functions to estimate the results using 

𝑦𝑖̅ = 𝑦𝑖
0 + 𝜂 ∑ 𝑓𝑘(𝑈𝑖)

𝐾
𝑘=1  (2) 

Where, 𝑦𝑖̅ - indicated the predicted output for the ith data with the parameter 

vector 𝑈𝑖, K - denotes the number of estimators corresponding to 

independent tree structures for each 𝑓𝑘, 𝑦𝑖
0 - display the primary hypothesis 

(mean of the original parameters in the training data), 𝜂 – learning rate, 𝑓𝑘 - 

represents the leaves weight that is established by reducing the objective 

function of the kth tree. 

𝑓𝑜𝑏𝑗 = 𝛾𝑇 + ∑ [𝑔𝑎𝜔𝑎 +
1

2
(ℎ𝑎 + 𝜆)𝜔𝑎

2]𝑇
𝑎=1   (3) 

Where T – denotes the quantity of leaf nodes, 𝛾 – denotes the complexity 

parameter, 𝜆 – constant coefficient, 𝜔𝑎
2 - leaf weight from 1 to T, 𝑔𝑎 and ℎ𝑎 

are the summation parameters for the entire dataset associated with a leaf of 



303                                                                                                               JNS 36/2024 

 

 

the initial and previous loss function gradient. In order to build the kth tree, 

a leaf is distributed into several leaves. 

𝐺𝑎𝑖𝑛 =  
1

2
[

𝐺𝐿
2

𝐻𝐿+ 𝜆
+

𝐺𝑅
2

𝐻𝑅+ 𝜆
+

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝐿+𝜆
]  (4) 

Where 𝐺𝐿 and 𝐻𝐿 - division of the left leaf, 𝐺𝑅 and 𝐻𝑅 - division of the right 

leaf. When the gain parameter is approximated to zero, the division criteria 

are generally assumed. 

2.4 NNAR model 

The NNAR (Neural Network AutoRegressive) model (Veloz et al., 2016; 

Hyndman & Athanasopoulos, 2018) is a hybrid approach combining the 

autoregressive framework with the flexibility of neural networks to forecast 

time series data. It uses lagged observations as inputs, with a feedforward 

neural network capturing non-linear relationships and predicting future 

values. The model is denoted as NNAR(p,k), where p is the number of lags 

and k is the number of hidden neurons, or NNAR(p,P,k) for seasonal data. 

Unlike traditional AR models, NNAR does not assume linearity or 

stationarity, making it suitable for capturing complex patterns, trends, and 

seasonality in data. It is trained by minimizing a loss function (e.g., Mean 

Squared Error) using gradient-based optimization. In the NNAR model, the 

inputs into each hidden layer neuron are combined linearly: 

ℎ𝑗 = 𝛼𝑗 + ∑ 𝜔𝑖,𝑗𝑥𝑖
𝑁
𝑖=1   (5) 

Where ℎ𝑗  is the j-th hidden layer neuron, N is the number of input layer 

neurons, 𝛼𝑗 is the intercept of the j-th hidden neuron, 𝜔𝑖,𝑗 represents the 

weights assigned to the connection between the input and the hidden layer, 

𝑥𝑖 are the observations of the input layer. Non-linear activation functions in 

the hidden layers enable the model to capture intricate patterns and the 

relationships in the data. The activation function is given by: 

𝑔(ℎ) =
1

1+𝑒−ℎ
  (6) 

2.5 Accuracy metrics 

Evaluation metrics play a vital role in measuring the performance of 

forecasting models, helping to ensure their accuracy and reliability. 

Commonly used metrics in time series forecasting include Mean Absolute 
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Error (MAE), which quantifies the average size of prediction errors; Root 

Mean Squared Error (RMSE), which gives greater weight to larger errors by 

squaring the differences; and Mean Absolute Percentage Error (MAPE), 

which represents errors as a percentage of the actual values. These metrics 

offer valuable insights into the model's accuracy, consistency, and 

robustness, making them essential for comparing and selecting the most 

effective forecasting method. Mathematically, these metrics are defined as: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑖 − 𝑦𝑖|

𝑛
𝑖=1   (mean absolute error)  (7) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1    (root mean squared error) (8) 

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑

|𝑥𝑖−𝑦𝑖|

|𝑦𝑖|
𝑛
𝑖=1 ) ∙ 100%  (mean absolute percentage error)  (9) 

Where 𝑥𝑖 are real values, 𝑦𝑖 are predicted values and 𝑓(∙) - some function 

that transforms both the predicted and observed values. The authors 

(Hyndman & Koehler, 2006) propose the Mean Absolute Scaled Error 

(MASE) as a scale-independent metric that effectively addresses challenges 

arising from zero demand values, making it especially suitable for analyzing 

intermittent demand data. In contrast, the study from (Reich et al., 2016) 

introduces the relative Mean Absolute Error (relMAE) as a useful metric for 

evaluating point predictions, enabling consistent comparisons of similar 

modeling approaches across different time series datasets. These accuracy 

metrics, mathematically are represented as: 

𝑀𝐴𝑆𝐸 =  
𝑀𝐴𝐸

𝑀𝐴𝐸𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒,𝑛𝑎𝑖𝑣𝑒
 (mean absolute scaled error) (10) 

𝑟𝑒𝑙𝑀𝐴𝐸 =
1

𝑇
∑ |𝑓(𝑥𝑖) − 𝑓(𝑦𝑖)|𝑇

𝑖=1  (relative mean absolute error)  (11) 

3. Results and discussions 

In our work, we utilized STL + ARIMA, along with ARIMA, NNAR, and 

XGBoost, to evaluate their performance in forecasting electricity prices. The 

models were trained on the training dataset and then evaluated on the test 

dataset. The data were processed in R using as the main forecasting library 

the package: modeltime (Dancho, 2024). The full time series with the main 

parts of: train and test can be seen in Figure 5. 
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Figure 5. MCP divided into train and test 
Source: Authors 

In STL+ ARIMA we used three seasonal periods: 7, 30, 60 for weekly and 

monthly seasonality. Since the pattern in price electricity was visible every 

two months we used also period 60. For XGBoost model we performed 

hyperparameter tuning and the best parameters elected were 200 trees, with 

learning rate equals to 1.02 and minimal node size 2. The results of accuracy 

metrics for the test dataset are presented in Table 1, offering a comparative 

analysis of model performance. 

Table 1. Accuracy metrics for out of sample data using different models 

Metrics ARIMA STL+ARIMA XGBoost NNAR 

RMSE 26.9 18.2 17.0 19.1 

MAPE 42.9 27.2 23.2 29.1 

MASE 1.92 1.21 1.13 1.28 

MAE 22.2 14.0 13.0 14.8 

Source: Authors 
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The table clearly shows that the XGBoost model outperforms all other 

models across all evaluated accuracy metrics, demonstrating its ability to 

provide the most reliable and precise predictions for day-ahead electricity 

prices. To further illustrate the accuracy of the predictions, a comparison of 

actual versus predicted values is presented in Figure 6.  

 

Figure 6. Forecasts of market electricity price from XGBoost model 
Source: Authors 

The Figure 6 reveals that the XGBoost model struggles with predicting sharp 

spikes in electricity prices, which often occur due to sudden market changes 

or extreme conditions that are challenging to model. However, for the 

remainder of the test data, the model demonstrates strong predictive 

capability, closely aligning with the actual values. This indicates that 

XGBoost is effective at capturing the general patterns and trends in 

electricity prices but may benefit from further fine-tuning or the 

incorporation of additional features to improve its performance in 

forecasting these sudden changes. 

Conclusions 

In our study, we explored various models to forecast day-ahead electricity 

prices in Albania, aiming to evaluate their accuracy and effectiveness. Both 

classical statistical models and advanced machine learning techniques were 

employed and compared using standard evaluation metrics applied to the test 

dataset. Among the models tested, XGBoost demonstrated superior 
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performance, delivering more accurate predictions compared to other 

methods. In addition to price forecasting, we also analyzed the relationship 

between energy load and production, recognizing their critical influence on 

market dynamics. Understanding these relationships provides valuable 

insights into the factors influencing price fluctuations and serves as a 

foundation for future studies. Our subsequent research will incorporate these 

findings to refine forecasting models and improve the accuracy of electricity 

price predictions by integrating load and production dynamics into the 

modeling process. 
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