
94 JNS 38/2025

LEVERAGING MICRO-FRONTENDS TO INCREASE

THE MODULARITY OF WEB APPLICATIONS

KRISTI BRAHOLLI, KLESTI HOXHA

Department of Informatics, Faculty of Natural Sciences,

University of Tirana, Albania

e-mail: kristi.braholli@fshn.edu.al

Abstract

This paper explores the concept of micro-frontends in the development of web-

based applications, as an architectural approach designed to address the

challenges of scalability and maintainability in modern systems. Driven by the

rapid growth and increasing complexity of web applications over the past

fifteen years, there has been a need for better management, clarity, and

structured architecture. Micro-frontends offer a solution by breaking down

the frontend into smaller, independent units that can be developed, deployed,

and maintained by different teams. Inspired by the success of microservices,

developers have started to apply similar architectural principles to the

frontend, giving rise to the micro-frontend approach. Although the concept is

not entirely new, it has gained popularity in recent years due to the rise of

single-page applications and the need for more efficient scaling and

maintenance. This approach offers several benefits, including faster

development cycles, improved scalability, and reduced maintenance costs.

However, it also requires careful planning and coordination to be successfully

implemented in real-world projects. To evaluate this architecture, in this work

we design and implement a case study prototype that leverages the micro-

frontend architecture combining React, NextJS, VueJS, and NodeJS using

Webpack Module Federation. Despite its notable advantages, including

independent deployment, this architecture was found to introduce additional

maintenance complexity for small-scale applications.

Key words: Micro-frontends, scalability, maintainability, modular design,

software architecture.

95 JNS 38/2025

Përmbledhje

Ky punim trajton konceptin e mikrofrontendeve në zhvillimin e aplikacioneve

të bazuara në ueb, si një qasje arkitekturore që synon të adresojë sfidat e

shkallëzimit dhe mirëmbajtjes në sistemet moderne. Duke u nisur nga

evolucioni i vazhdueshëm i teknologjisë dhe rritja e kompleksitetit të

aplikacioneve njëfaqëshe, mikrofrontendet ofrojnë mundësinë për ndarjen e

ndërfaqes së përdoruesit në njësi më të vogla dhe të pavarura, të cilat mund

të zhvillohen dhe mirëmbahen në mënyrë të pavarur nga ekipe të ndryshme.

Në këtë kontekst, punimi eksploron mënyrën sesi copëzimi i funksionaliteteve

në komponente më të vegjël ndikon në fleksibilitetin, strukturën dhe

shkallëzueshmërinë e aplikacioneve. Vihen në dukje përfitimet dhe sfidat që

lidhen me adoptimin e mikrofrontendeve, duke përfshirë përmirësimin e

cikleve të zhvillimit, reduktimin e kostove të mirëmbajtjes dhe nevojën për

koordinim të mirë mes ekipeve të zhvillimit. Për të vlerësuar arkitekturën në

fjalë u ndërtua një prototip rast studimi që kombinon teknologjitë React,

NextJS, VueJS, dhe NodeJS nëpërmjet Webpack Module Federation. Përveç

lehtësive të ndjeshme, duke përfshirë vendosjen në punë në mënyrë të pavarur,

u vu re që për aplikime të vogla kjo arkitekturë krijon kompleksitet shtesë në

mirëmbajtjen e aplikimeve në fjalë.

Fjalë kyçe: Mikrofrontend-e, shkallëzueshmëri, mirëmbajtje, dizenjim

modular, arkitekturë softueri.

Introduction

Historically, web applications were divided into two main components: a

back-end (server-side) responsible for processing, storing, and serving data via

direct database calls or APIs, and a front-end (client-side) designed to present

these data through a user-friendly interface (see Figure 1), enabling smooth

user interaction (Nielsen, 2015).

With rapid technological changes, application structures are evolving. Modern

clients demand increasingly complex functionalities, requiring sophisticated

solutions and experienced development teams. While early-stage projects may

not face significant challenges, large-scale applications pose difficulties in

managing code complexity and meeting tight deadlines. Consequently, new

approaches in code engineering have emerged.

96 JNS 38/2025

Schäffer et al. (2019) suggest that adopting microservices and micro-frontends

(Geers, 2020) can address these challenges. These concepts, although

separate, can be integrated to build scalable, modular applications.

Microservices (see Figure 2) divide the back end into small, independent,

specialized components communicating via well-defined protocols, typically

HTTP (Pavlenko, Askarbekuly, Megha, & Mazzara, 2020).

This architecture enables parallel development, reusability, and scalability,

unlike monolithic architectures where all functionalities reside in a single

program, limiting flexibility and requiring full system redeployment for

changes (Nielsen, 2015; GeeksforGeeks, n.d.).

On the front end, application complexity has increased similarly. Inspired by

microservices, the frontend community developed the micro-frontend

architecture (Pavlenko, Askarbekuly, Megha, & Mazzara, 2020;

Thoughtworks, n.d.). A micro-frontend divides a frontend application into

independently deployable, team-owned modules, each focused on a specific

business function.

Figure 1. Front-end and Back-end (Front-end vs Back-end

Developer Difference, 2015).

97 JNS 38/2025

Figure 2. Microservices overview (Microservices, n.d.)

In this work, the main approaches of splitting the frontend layer of an

application in terms of micro-frontends (microservices) are highlighted. We

have developed a case study prototype that implements the horizontal splitting

approach using WebPack, an important communication enabler. We

investigate the extent to which Webpack Module Federation enables

horizontal splitting within micro-frontend-based applications and evaluate the

architectural advantages introduced by this decomposition strategy. The paper

is concluded with our final thoughts and observation regarding the micro-

frontend architecture.

Splitting methods

Although in principle they apply the same idea, there are several ways of

partitioning these applications (see Figure 5). The most typical ones are

horizontal, vertical, and composition-based divisions (Prajwal, Parekh, and

Shettar, 2021).

98 JNS 38/2025

Vertical split

Vertical split (see Figure 3) is implemented by splitting the application into

subparts that are ultimately brought together again into a single “node” or web

page. The separation is applied at the domain level, and each team adopts what

is called Domain-Driven Design (DDD), within which it develops its

independent work. So, each micro-frontend basically will consist of a single

page or a set of pages, no further divisions between them.

Furthermore, Mezzalira (2021) mentions that the application is divided into

several independent components, each responsible for a specific aspect of the

application’s functionality.

These micro-frontends are independent in the same way as microservices and

can be developed and managed in full autonomy. This means that a different

team can work on each micro-frontend and later decide to integrate them

together into a complete application (Mezzalira, 2021).

Figure 3. An example vertical micro-frontend (Mezzalira, 2021)

Again, according to Mezzalira, to divide an application into micro-frontends,

the application must first be decomposed into small functional units. This

division should be done in such a way that each micro-frontend contains only

what is necessary to perform its specific functionality and is not tightly

coupled with the rest of the application. This ensures that if one micro-frontend

changes, only that part of the application will be affected, while the others

remain unaffected.

99 JNS 38/2025

Horizontal Split

The horizontal split of micro-frontends (see Figure 4) is a concept in which a

view of a web application is divided into several independent groupings of

horizontal functionalities. Horizontal division allows development teams to

work on separate sets of functionalities and to focus exclusively on them. For

example, one team may be responsible for developing the product details view

of an application, while another team may focus on the footer part of it. Each

team works independently and uses its own technologies and methodologies

to develop and manage its specific functionalities (Mezzalira, 2021). This

approach needs a composition strategy when rendering the full page.

Figure 4. Horizontal split in micro-frontends (Mezzalira, 2021)

This horizontal separation of Micro-frontend functionalities aligns with the

concept of Microservices division, where application components are split into

small and independent services. Each Micro-frontend group can operate as an

autonomous team that applies horizontal division to enable parallel

development and clearly defined responsibilities for each specific

functionality. Just like vertical division, the horizontal division of Micro-

frontends is advantageous for scaling the development team, as it helps

distribute the application’s complexity and allows each team to concentrate on

the specific areas in which they are most specialized.

To implement the horizontal division of micro-frontends, it is important to

identify and define the horizontal groups of functionalities that are

independent yet need to collaborate to create the final application.

100 JNS 38/2025

Furthermore, proper coordination and communication among teams are

essential to ensure that all micro-frontend components are connected and

function together as a complete system.

Figure 5. Horizontal split vs. vertical split (O’Reilly, n.d.)

Related Works

Despite their advantages, micro-frontends require careful planning for

orchestration, routing, isolation, UI/UX consistency, and inter-module

communication. They are not universally suitable; smaller, simpler

applications may benefit more from monolithic approaches (Pavlenko,

Askarbekuly, Megha, & Mazzara, 2020).

Recent research has examined how micro-frontend architectures can enhance

modularity, scalability, and team autonomy in modern web applications.

Mezzalira (2019) describes an application organized into multiple subdomains

based on user interactions and following Domain-Driven Design (DDD)

principles, where each subdomain was implemented as a micro-frontend,

101 JNS 38/2025

except for the video component, which was treated separately. Micro-

frontends were loaded and orchestrated by a bootstrap application that

abstracted platform- and device-specific requirements, allowing them to run

across different devices without modifying the code and enabling teams to

work independently while maintaining delivery speed.

Yang et al. (2019) explore a content management system structured as

function-based modules using a micro-frontend approach. Independent sub-

applications were created for different business modules, with a main project

based on the Mooa framework managing the loading, routing, and user access

control dynamically. While this architecture offered benefits such as

independent development and continuous deployment, it also posed

challenges related to integrating diverse technology stacks, preventing

conflicts, and optimizing resource usage.

Pavlenko et al. (2020) present a case study of an Education Hub system, which

aggregates online courses from multiple providers to serve as a single-entry

point and search engine for users. Their approach utilized the Backend-for-

Frontend (BFF) model to ensure a unified access point for the frontend. In

contrast, this thesis examines similar scenarios while combining multiple

JavaScript frameworks into a single source, demonstrating how micro-

frontends can be adapted to more complex and heterogeneous applications.

Together, these examples illustrate the potential of micro-frontends to increase

modularity, reduce code duplication, and enhance team autonomy in web

application development, while also highlighting the challenges of

orchestration, integration, and maintaining a consistent user experience across

modules.

Nikulina and Khatsko (2023) propose a structured approach on converting an

existing monolith app into using the micro-frontends architecture. Similarly to

the generic microservice architecture they propose starting with the

identification of the business features using them as the first step towards a

modular and later micro-frontend based approach.

Webpack as a Communication Enabler

Webpack (see Figure 6) is a tool for compiling and bundling resources in web

applications. Its main purpose is to assist in organizing, transforming, and

102 JNS 38/2025

optimizing the application’s code and assets to prepare them for deployment

in the production environment.

It is well-suited for projects that involve multiple interdependent resources,

such as those using Node.js, React, Vue, or Next.js. It features a module-based

architecture that allows developers to fully leverage modular development

principles. It enables the importing and exporting of resources between

modules, providing a flexible and efficient way to manage application

dependencies and assets.

Figure 6. Webpack bundling (Webpack, n.d.)

Module Federation

Module Federation (see Figure 7) is a Webpack configuration that enables the

sharing and integration of modules between different web applications. The

process begins with the host (or producer) application, which exports the

modules it intends to make available. Through the Webpack configuration and

the use of the ModuleFederationPlugin, developers specify the modules to be

exported, defining the module name, file location, and export settings

(Webpack, n.d.).

The existence of numerous frameworks and libraries can create challenges in

their integration and composition. Since Webpack is supported by most of the

leading development frameworks, and moreover, offers the Module

103 JNS 38/2025

Federation feature, it becomes a powerful tool for building micro-frontends

and dividing applications into independent modules.

In addition, Module Federation enables the reuse of modules across different

applications, reducing code duplication and increasing development

efficiency. This architecture is particularly beneficial in large-scale projects

that require frequent interaction between applications or the distribution of

responsibilities among multiple development teams.

Figure 7. Visualization of how module federation works.

104 JNS 38/2025

Case study prototype

Recent works on micro-frontends, being a relatively new and evolving

concept, are somewhat preliminary and often focused on a single technology

or framework. In the following case study, we leverage modules, plugins, or

frameworks to create a bridge connecting multiple frameworks as micro-

applications within a single parent application. This approach enables virtually

unlimited development possibilities, allowing fully independent teams

specialized in a single framework to develop and maintain specific

functionalities at the module or component level.

Integration of multiple frameworks in a parent application

In the prototype presented below, the concept of linking the most widely used

libraries and frameworks into a parent application is applied, along with the

implementation of a micro-frontend architecture. The technologies used in this

example include:

● NodeJS (no additional framework / library involved)

● React

● NextJS

● VueJS

● Webpack

These frameworks are invoked and managed by a parent application, or

consumer, in our case NodeJS based.

Example Use Case: Currency Converter Web Application

The following prototype demonstrates the creation of a web application that

provides currency conversion functionality along with historical information

displayed as charts for the selected currency. The goal of it is to illustrate how

pieces of code from different frameworks can be used together, while

maintaining interdependency and communication capabilities between them.

105 JNS 38/2025

This methodology highlights the potential for combining multiple frameworks

into a unified micro-frontend system, showcasing how independent modules

can interact seamlessly within a parent application to deliver complex

functionalities.

The individual modules of it, the tab controller, the filter component, and the

chart displayer have been developed through independent modules using the

technologies mentioned above. Please refer to Figures 8, 9, and 10 for further

details. We used module federation for the inter-communication between

them. We observed that each individual micro-frontend can be developed, run,

and deployed independently. Our prototype uses publicly available APIs, in

case the backend part of the application would be developed by the same

company (team), it would be advisable that the API (backend) and consumer

frontend components be developed by the same team.

A notable benefit of the implemented architecture is the possibility of

deployment of newer versions of portions of the user interface. It was also

noticed that teams with different tech stack abilities can quickly collaborate in

creating larger applications, reducing the learning curve needed to implement

the same application with the same technology. This is in the same line as the

traditional microservice (usually backend) based architectures. Out of the

above outlined division approaches, we relied on the horizontal splitting and

module federation. The benefits are not immediately noticeable considering

the overhead related to deployment and bundling / composition. Same as with

traditional microservices architectures, the micro-frontend approach seems

more fit for carefully engineered larger applications.

106 JNS 38/2025

Figure 8. Micro-frontend developed on VueJS.

ReactJS

React

NexJS

NodeJS

107 JNS 38/2025

Figure 9. Micro-frontend splitting of the developed prototype.

Figure 10. Composition diagram of the implemented use case.

Figure 11 shows an excerpt from the WebPack configuration of one of the

micro-frontends (producer) and the host app of the implemented case study

prototype. The filters component (micro-frontend, see Figure 9) has been

exposed as usable remotely while it has been loaded (composed) by the parent

app. This composition strategy is deployment agnostic, each individual micro-

frontend may be deployed independently and redundantly if needed.

108 JNS 38/2025

Figure 11. Excerpts from the WebPack module federation configurations for

the IntervalFilters micro-frontend.

We didn’t encounter any shared dependency issues, while it was noted that for

simple apps like the one of our case study prototype may create unnecessary

complex configurations that would need to be maintained separately. Again,

in the same line as most recent insights from industry adopters of microservice

architectures, we wouldn’t recommend a “micro-frontend first” approach for

simple apps.

109 JNS 38/2025

Conclusions

In this work, we explore micro-frontends, a new architecture in web

application development that divides applications into small, independent

modules. The research and case study implementation revealed several

conclusions that were predominantly positive and promising.

One of the main advantages observed is the clear separation of responsibilities

among developers and the division of the application into independent

modules. Development teams can work autonomously on their respective

modules, using preferred technologies and programming languages. This

approach offers flexibility and freedom to adapt development according to

team needs and preferences, while also improving code reusability.

Independent modules allow the same functionalities to be used across different

applications, reducing code duplication and enabling developers to leverage

existing code without rewriting it. This results in faster development cycles

and overall increased efficiency.

However, setting up the environment and architecture necessary to integrate

these micro modules may not be worthwhile for small projects, either in terms

of data volume or project complexity. In such cases, more time may be spent

on package integration than on actual feature development.

Therefore, the choice of application architecture should always be carefully

evaluated, considering available resources and the requirements of the project.

Nevertheless, even for smaller projects, when micro-frontends are properly

implemented by a professional team, they can bring a fresh and highly

promising approach to development.

To strengthen the evidence base, future work should include empirical

evaluations (preferably industry based) that examine not only the potential

gains of micro-frontend-based architectures, but also the associated drawbacks

and architectural trade-offs. These studies would help clarify when and how

micro-frontends deliver measurable value.

References

Geers, M. (2020). Micro frontends in action. Simon and Schuster

Mezzalira, L. (2019, April 8). The “DAZN way.” Retrieved from

https://lucamezzalira.com/2019/04/08/adopting-a-micro-frontends-architecture/

https://lucamezzalira.com/2019/04/08/adopting-a-micro-frontends-architecture/

110 JNS 38/2025

Mezzalira, L. (2021). Building Micro-Frontends. O'Reilly Media, Inc.

Nielsen, C. D. (2015). Investigate availability and maintainability within a microservice

architecture. Aarhus: Department of Computer Science, Aarhus University.

Pavlenko, A., Askarbekuly, N., Megha, S., & Mazzara, M. (2020). Micro-frontends:

Application of microservices to web front-ends. Journal of Internet Services and Information

Security, 10, 49–66

PraJwal, Y., Parekh, J. V., & Shettar, R. (2021). A brief review of micro-frontends. United

International Journal for Research and Technology, 2

Schäffer, E., Mayr, A., Fuchs, J., Sjarov, M., Vorndran, J., & Franke, J. (2019). Microservice-

based architecture for engineering tools enabling a collaborative multi-user configuration of

robot-based automation solutions. Procedia CIRP, 86, 86–91

Yang, C., Liu, C., & Su, Z. (2019). Research and application of micro frontends. In IOP

Conference Series: Materials Science and Engineering

Web Resources

AngularJS. (n.d.). Retrieved from https://docs.angularjs.org

Front-end vs Back-end Developer Difference. (2015). Retrieved from http://frontend-

school.blogspot.com/2015/10/front-end-back-end-developer-difference.html

GeeksforGeeks. (n.d.). Monolithic vs Microservices architecture. Retrieved from

https://www.geeksforgeeks.org/monolithic-vs-microservices-architecture/

Microservices (n.d.), Microservices.io. https://microservices.io/

Nikulina, O., & Khatsko, K. (2023). Method of converting the monolithic architecture of a

front-end application to micro-frontends. Bulletin of National Technical University" KhPI".

Series: System Analysis, Control and Information Technologies, (2 (10)), 79-84.

NPM. (n.d.). Retrieved from https://docs.npmjs.com/

NodeJS. (n.d.). Retrieved from https://nodejs.org/en/docs/

NextJS. (n.d.). Retrieved from https://nextjs.org/docs

O’Reilly. (n.d.). Building Micro-Frontends. Retrieved from

https://www.oreilly.com/library/view/building-micro-frontends/9781492082989/ch04.html

React. (n.d.). Retrieved from https://react.dev/reference/react

Thoughtworks. (n.d.). Micro-frontends. Retrieved from

https://www.thoughtworks.com/radar/techniques/micro-frontends

VueJS. (n.d.). Retrieved from https://vuejs.org/guide/introduction.html

Webpack. (n.d.). Retrieved from https://webpack.js.org/concepts/module-federation/

https://docs.angularjs.org/
http://frontend-school.blogspot.com/2015/10/front-end-back-end-developer-difference.html
http://frontend-school.blogspot.com/2015/10/front-end-back-end-developer-difference.html
https://www.geeksforgeeks.org/monolithic-vs-microservices-architecture/
https://microservices.io/
https://docs.npmjs.com/
https://nodejs.org/en/docs/
https://nextjs.org/docs
https://www.oreilly.com/library/view/building-micro-frontends/9781492082989/ch04.html
https://react.dev/reference/react
https://www.thoughtworks.com/radar/techniques/micro-frontends
https://vuejs.org/guide/introduction.html
https://webpack.js.org/concepts/module-federation/

