94 JNS 38/2025

LEVERAGING MICRO-FRONTENDS TO INCREASE
THE MODULARITY OF WEB APPLICATIONS

KRISTI BRAHOLLI, KLESTI HOXHA
Department of Informatics, Faculty of Natural Sciences,
University of Tirana, Albania
e-mail: kristi.braholli@fshn.edu.al

Abstract

This paper explores the concept of micro-frontends in the development of web-
based applications, as an architectural approach designed to address the
challenges of scalability and maintainability in modern systems. Driven by the
rapid growth and increasing complexity of web applications over the past
fifteen years, there has been a need for better management, clarity, and
structured architecture. Micro-frontends offer a solution by breaking down
the frontend into smaller, independent units that can be developed, deployed,
and maintained by different teams. Inspired by the success of microservices,
developers have started to apply similar architectural principles to the
frontend, giving rise to the micro-frontend approach. Although the concept is
not entirely new, it has gained popularity in recent years due to the rise of
single-page applications and the need for more efficient scaling and
maintenance. This approach offers several benefits, including faster
development cycles, improved scalability, and reduced maintenance costs.
However, it also requires careful planning and coordination to be successfully
implemented in real-world projects. To evaluate this architecture, in this work
we design and implement a case study prototype that leverages the micro-
frontend architecture combining React, NextJS, VuelS, and NodelS using
Webpack Module Federation. Despite its notable advantages, including
independent deployment, this architecture was found to introduce additional
maintenance complexity for small-scale applications.

Key words: Micro-frontends, scalability, maintainability, modular design,
software architecture.

95 JNS 38/2025

Pérmbledhje

Ky punim trajton konceptin e mikrofrontendeve né zhvillimin e aplikacioneve
té bazuara né ueb, si njé qasje arkitekturore gé synon té adresojé sfidat e
shkallézimit dhe mirémbajtjes né sistemet moderne. Duke u nisur nga
evolucioni i vazhdueshém i teknologjisé dhe rritja e kompleksitetit té
aplikacioneve njéfagéshe, mikrofrontendet ofrojné mundésiné pér ndarjen e
ndérfages sé pérdoruesit né njési mé té vogla dhe té pavarura, té cilat mund
té zhvillohen dhe mirémbahen né ményré té pavarur nga ekipe té ndryshme.
Né kété kontekst, punimi eksploron ményrén sesi copézimi i funksionaliteteve
né komponente mé té vegjél ndikon né fleksibilitetin, strukturén dhe
shkallézueshmériné e aplikacioneve. Vihen né dukje pérfitimet dhe sfidat gé
lidhen me adoptimin e mikrofrontendeve, duke pérfshiré pérmirésimin e
cikleve té zhvillimit, reduktimin e kostove té mirémbajtjes dhe nevojén pér
koordinim té miré mes ekipeve té zhvillimit. Pér té vlerésuar arkitekturén né
fjalé u ndértua njé prototip rast studimi gé kombinon teknologjité React,
NextJS, VueJS, dhe NodeJS népérmjet Webpack Module Federation. Pérveg
lehtésive té ndjeshme, duke pérfshiré vendosjen né puné né ményré té pavarur,
u vu re qé pér aplikime té vogla kjo arkitekturé krijon kompleksitet shtesé né
mirémbajtjen e aplikimeve né fjalé.

Fjalé kyce: Mikrofrontend-e, shkallézueshméri, mirémbajtje, dizenjim
modular, arkitekturé softueri.

Introduction

Historically, web applications were divided into two main components: a
back-end (server-side) responsible for processing, storing, and serving data via
direct database calls or APIs, and a front-end (client-side) designed to present
these data through a user-friendly interface (see Figure 1), enabling smooth
user interaction (Nielsen, 2015).

With rapid technological changes, application structures are evolving. Modern
clients demand increasingly complex functionalities, requiring sophisticated
solutions and experienced development teams. While early-stage projects may
not face significant challenges, large-scale applications pose difficulties in
managing code complexity and meeting tight deadlines. Consequently, new
approaches in code engineering have emerged.

96 JNS 38/2025

Schéffer et al. (2019) suggest that adopting microservices and micro-frontends
(Geers, 2020) can address these challenges. These concepts, although
separate, can be integrated to build scalable, modular applications.
Microservices (see Figure 2) divide the back end into small, independent,
specialized components communicating via well-defined protocols, typically
HTTP (Pavlenko, Askarbekuly, Megha, & Mazzara, 2020).

This architecture enables parallel development, reusability, and scalability,
unlike monolithic architectures where all functionalities reside in a single
program, limiting flexibility and requiring full system redeployment for
changes (Nielsen, 2015; GeeksforGeeks, n.d.).

£

W WEB USER f ADMINISTRATORS
* Customers O™ @ st
LL « Suppliers L0 WL« Executives
* General Public * Contractors
FRONT-END " BACK-END
Point of Contact - Your Website Behind the Scenes - IgnitionWeb

This is how you control your site
\,—.,

DESIGN PROGRAMMING

¢

Figure 1. Front-end and Back-end (Front-end vs Back-end
Developer Difference, 2015).

On the front end, application complexity has increased similarly. Inspired by
microservices, the frontend community developed the micro-frontend
architecture (Pavlenko, Askarbekuly, Megha, & Mazzara, 2020;
Thoughtworks, n.d.). A micro-frontend divides a frontend application into
independently deployable, team-owned modules, each focused on a specific
business function.

97 JNS 38/2025

REST Account
ari D8
Maobile app
Inventory
D8

[] Shipping
REST
AR Shipping 0.3
L - Service

Figure 2. Microservices overview (Microservices, n.d.)

Browsar

In this work, the main approaches of splitting the frontend layer of an
application in terms of micro-frontends (microservices) are highlighted. We
have developed a case study prototype that implements the horizontal splitting
approach using WebPack, an important communication enabler. We
investigate the extent to which Webpack Module Federation enables
horizontal splitting within micro-frontend-based applications and evaluate the
architectural advantages introduced by this decomposition strategy. The paper
is concluded with our final thoughts and observation regarding the micro-
frontend architecture.

Splitting methods

Although in principle they apply the same idea, there are several ways of
partitioning these applications (see Figure 5). The most typical ones are
horizontal, vertical, and composition-based divisions (Prajwal, Parekh, and
Shettar, 2021).

98 JNS 38/2025

Vertical split

Vertical split (see Figure 3) is implemented by splitting the application into
subparts that are ultimately brought together again into a single “node” or web
page. The separation is applied at the domain level, and each team adopts what
is called Domain-Driven Design (DDD), within which it develops its
independent work. So, each micro-frontend basically will consist of a single
page or a set of pages, no further divisions between them.

Furthermore, Mezzalira (2021) mentions that the application is divided into
several independent components, each responsible for a specific aspect of the
application’s functionality.

These micro-frontends are independent in the same way as microservices and
can be developed and managed in full autonomy. This means that a different
team can work on each micro-frontend and later decide to integrate them
together into a complete application (Mezzalira, 2021).

HEADER |

VIDEQ PLAYER ‘

CATALODG |

FOOTER |

Figure 3. An example vertical micro-frontend (Mezzalira, 2021)

Again, according to Mezzalira, to divide an application into micro-frontends,
the application must first be decomposed into small functional units. This
division should be done in such a way that each micro-frontend contains only
what is necessary to perform its specific functionality and is not tightly
coupled with the rest of the application. This ensures that if one micro-frontend
changes, only that part of the application will be affected, while the others
remain unaffected.

99 JNS 38/2025

Horizontal Split

The horizontal split of micro-frontends (see Figure 4) is a concept in which a
view of a web application is divided into several independent groupings of
horizontal functionalities. Horizontal division allows development teams to
work on separate sets of functionalities and to focus exclusively on them. For
example, one team may be responsible for developing the product details view
of an application, while another team may focus on the footer part of it. Each
team works independently and uses its own technologies and methodologies
to develop and manage its specific functionalities (Mezzalira, 2021). This
approach needs a composition strategy when rendering the full page.

HEADER (Team O
b A A L AL A LA X L K a4 B 4 2 2 41 2 2 o
PRODUCT ‘| PRODUCT
DETAILS '|CAROUSEL
(Team A) ' (Team B)

FOOTER (Team O |

Figure 4. Horizontal split in micro-frontends (Mezzalira, 2021)

This horizontal separation of Micro-frontend functionalities aligns with the
concept of Microservices division, where application components are split into
small and independent services. Each Micro-frontend group can operate as an
autonomous team that applies horizontal division to enable parallel
development and clearly defined responsibilities for each specific
functionality. Just like vertical division, the horizontal division of Micro-
frontends is advantageous for scaling the development team, as it helps
distribute the application’s complexity and allows each team to concentrate on
the specific areas in which they are most specialized.

To implement the horizontal division of micro-frontends, it is important to
identify and define the horizontal groups of functionalities that are
independent yet need to collaborate to create the final application.

100 JNS 38/2025

Furthermore, proper coordination and communication among teams are
essential to ensure that all micro-frontend components are connected and
function together as a complete system.

Horizontal :
split » Identify
. . .
Client-side Edge-side Server-side Edge-side s Com
composition composition composition composition P
) v v v
Client-side Edge-side Server-side Edge-side » Route
routing routing routing routing
g ! D [. D & ! 2 I ! N
Application shell Serverside Server-side includes Application Technical
CORIONATS indudes Sever e shel | * solutions
iframes rendering
J Y € y, . J!

Figure 5. Horizontal split vs. vertical split (O’Reilly, n.d.)

Related Works

Despite their advantages, micro-frontends require careful planning for
orchestration, routing, isolation, UI/UX consistency, and inter-module
communication. They are not universally suitable; smaller, simpler
applications may benefit more from monolithic approaches (Pavlenko,
Askarbekuly, Megha, & Mazzara, 2020).

Recent research has examined how micro-frontend architectures can enhance
modularity, scalability, and team autonomy in modern web applications.
Mezzalira (2019) describes an application organized into multiple subdomains
based on user interactions and following Domain-Driven Design (DDD)
principles, where each subdomain was implemented as a micro-frontend,

101 JNS 38/2025

except for the video component, which was treated separately. Micro-
frontends were loaded and orchestrated by a bootstrap application that
abstracted platform- and device-specific requirements, allowing them to run
across different devices without modifying the code and enabling teams to
work independently while maintaining delivery speed.

Yang et al. (2019) explore a content management system structured as
function-based modules using a micro-frontend approach. Independent sub-
applications were created for different business modules, with a main project
based on the Mooa framework managing the loading, routing, and user access
control dynamically. While this architecture offered benefits such as
independent development and continuous deployment, it also posed
challenges related to integrating diverse technology stacks, preventing
conflicts, and optimizing resource usage.

Pavlenko et al. (2020) present a case study of an Education Hub system, which
aggregates online courses from multiple providers to serve as a single-entry
point and search engine for users. Their approach utilized the Backend-for-
Frontend (BFF) model to ensure a unified access point for the frontend. In
contrast, this thesis examines similar scenarios while combining multiple
JavaScript frameworks into a single source, demonstrating how micro-
frontends can be adapted to more complex and heterogeneous applications.

Together, these examples illustrate the potential of micro-frontends to increase
modularity, reduce code duplication, and enhance team autonomy in web
application development, while also highlighting the challenges of
orchestration, integration, and maintaining a consistent user experience across
modules.

Nikulina and Khatsko (2023) propose a structured approach on converting an
existing monolith app into using the micro-frontends architecture. Similarly to
the generic microservice architecture they propose starting with the
identification of the business features using them as the first step towards a
modular and later micro-frontend based approach.

Webpack as a Communication Enabler

Webpack (see Figure 6) is a tool for compiling and bundling resources in web
applications. Its main purpose is to assist in organizing, transforming, and

102 JNS 38/2025

optimizing the application’s code and assets to prepare them for deployment
in the production environment.

It is well-suited for projects that involve multiple interdependent resources,
such as those using Node.js, React, Vue, or Next.js. It features a module-based
architecture that allows developers to fully leverage modular development
principles. It enables the importing and exporting of resources between
modules, providing a flexible and efficient way to manage application
dependencies and assets.

bundle your images

Figure 6. Webpack bundling (Webpack, n.d.)

Module Federation

Module Federation (see Figure 7) is a Webpack configuration that enables the
sharing and integration of modules between different web applications. The
process begins with the host (or producer) application, which exports the
modules it intends to make available. Through the Webpack configuration and
the use of the ModuleFederationPlugin, developers specify the modules to be
exported, defining the module name, file location, and export settings
(Webpack, n.d.).

The existence of numerous frameworks and libraries can create challenges in
their integration and composition. Since Webpack is supported by most of the
leading development frameworks, and moreover, offers the Module

103 JNS 38/2025

Federation feature, it becomes a powerful tool for building micro-frontends
and dividing applications into independent modules.

In addition, Module Federation enables the reuse of modules across different
applications, reducing code duplication and increasing development
efficiency. This architecture is particularly beneficial in large-scale projects
that require frequent interaction between applications or the distribution of
responsibilities among multiple development teams.

' webpack |

4>{ webpa; ‘

webpack |

webpack ;

Figure 7. Visualization of how module federation works.

104 JNS 38/2025

Case study prototype

Recent works on micro-frontends, being a relatively new and evolving
concept, are somewhat preliminary and often focused on a single technology
or framework. In the following case study, we leverage modules, plugins, or
frameworks to create a bridge connecting multiple frameworks as micro-
applications within a single parent application. This approach enables virtually
unlimited development possibilities, allowing fully independent teams
specialized in a single framework to develop and maintain specific
functionalities at the module or component level.

Integration of multiple frameworks in a parent application

In the prototype presented below, the concept of linking the most widely used
libraries and frameworks into a parent application is applied, along with the
implementation of a micro-frontend architecture. The technologies used in this
example include:

o NodeJS (no additional framework / library involved)
° React

o NextJS

o VuelS

o Webpack

These frameworks are invoked and managed by a parent application, or
consumer, in our case NodeJS based.

Example Use Case: Currency Converter Web Application

The following prototype demonstrates the creation of a web application that
provides currency conversion functionality along with historical information
displayed as charts for the selected currency. The goal of it is to illustrate how
pieces of code from different frameworks can be used together, while
maintaining interdependency and communication capabilities between them.

105 JNS 38/2025

This methodology highlights the potential for combining multiple frameworks
into a unified micro-frontend system, showcasing how independent modules
can interact seamlessly within a parent application to deliver complex
functionalities.

The individual modules of it, the tab controller, the filter component, and the
chart displayer have been developed through independent modules using the
technologies mentioned above. Please refer to Figures 8, 9, and 10 for further
details. We used module federation for the inter-communication between
them. We observed that each individual micro-frontend can be developed, run,
and deployed independently. Our prototype uses publicly available APIs, in
case the backend part of the application would be developed by the same
company (team), it would be advisable that the API (backend) and consumer
frontend components be developed by the same team.

A notable benefit of the implemented architecture is the possibility of
deployment of newer versions of portions of the user interface. It was also
noticed that teams with different tech stack abilities can quickly collaborate in
creating larger applications, reducing the learning curve needed to implement
the same application with the same technology. This is in the same line as the
traditional microservice (usually backend) based architectures. Out of the
above outlined division approaches, we relied on the horizontal splitting and
module federation. The benefits are not immediately noticeable considering
the overhead related to deployment and bundling / composition. Same as with
traditional microservices architectures, the micro-frontend approach seems
more fit for carefully engineered larger applications.

= Currency Converter & Histrorical Data
B

Exchange Currencies a2 Historical Data “

Currency Exchanges in VueJ$

From: | IS0 ¥

106

NexJS

ReactJS

NodeJS

JNS 38/2025

Figure 8. Micro-frontend developed on VuelS.

Currency Converter & Histrorical Data

[xchangs Currencies £ Historical Caie gl
Please select a combination to see historical dats
ETER
[o] rme | e | smews | ovwes | e] oo |

i o n

107 JNS 38/2025

Figure 9. Micro-frontend splitting of the developed prototype.

Histancal Data Bt

Figure 10. Composition diagram of the implemented use case.

Figure 11 shows an excerpt from the WebPack configuration of one of the
micro-frontends (producer) and the host app of the implemented case study
prototype. The filters component (micro-frontend, see Figure 9) has been
exposed as usable remotely while it has been loaded (composed) by the parent
app. This composition strategy is deployment agnostic, each individual micro-
frontend may be deployed independently and redundantly if needed.

108 JNS 38/2025

1. // Consumer (host)

2.

3. plugins: [

4. new ModuleFederationPlugin({

Lic name: 'ExchangeRateCalculator', // Name of the app
6. remotes: {

7e MyApp: 'IntervalFilters@http://localhost:3000/remoteEntry.js', //Producer
8. }s

9. Pl

10.

11. // Producer

12.

13. plugins: [

14. new ModuleFederationPlugin({

15. name: "IntervalFilters",

16. library: { type: "var", name: "peer"},
17. filename: "remoteEntry.js",

18. remotes: {},

19. exposes: {

20. './IntervalFilters': './src/IntervalFilters'
21. }.

22. shared: {

2Eie ...deps,

24, react: {

25 singleton: true,

26 requiredVersion: deps.react,

27 }s

28. "react-dom": {

29. singleton: true,

30. requiredVersion: deps["react-dom"],
31 }s

32. },

33. i r

Figure 11. Excerpts from the WebPack module federation configurations for
the IntervalFilters micro-frontend.

We didn’t encounter any shared dependency issues, while it was noted that for
simple apps like the one of our case study prototype may create unnecessary
complex configurations that would need to be maintained separately. Again,
in the same line as most recent insights from industry adopters of microservice
architectures, we wouldn’t recommend a “micro-frontend first” approach for
simple apps.

109 JNS 38/2025

Conclusions

In this work, we explore micro-frontends, a new architecture in web
application development that divides applications into small, independent
modules. The research and case study implementation revealed several
conclusions that were predominantly positive and promising.

One of the main advantages observed is the clear separation of responsibilities
among developers and the division of the application into independent
modules. Development teams can work autonomously on their respective
modules, using preferred technologies and programming languages. This
approach offers flexibility and freedom to adapt development according to
team needs and preferences, while also improving code reusability.
Independent modules allow the same functionalities to be used across different
applications, reducing code duplication and enabling developers to leverage
existing code without rewriting it. This results in faster development cycles
and overall increased efficiency.

However, setting up the environment and architecture necessary to integrate
these micro modules may not be worthwhile for small projects, either in terms
of data volume or project complexity. In such cases, more time may be spent
on package integration than on actual feature development.

Therefore, the choice of application architecture should always be carefully
evaluated, considering available resources and the requirements of the project.
Nevertheless, even for smaller projects, when micro-frontends are properly
implemented by a professional team, they can bring a fresh and highly
promising approach to development.

To strengthen the evidence base, future work should include empirical
evaluations (preferably industry based) that examine not only the potential
gains of micro-frontend-based architectures, but also the associated drawbacks
and architectural trade-offs. These studies would help clarify when and how
micro-frontends deliver measurable value.

References
Geers, M. (2020). Micro frontends in action. Simon and Schuster
Mezzalira, L. (2019, April 8). The “DAZN way.” Retrieved from

https://lucamezzalira.com/2019/04/08/adopting-a-micro-frontends-architecture/

https://lucamezzalira.com/2019/04/08/adopting-a-micro-frontends-architecture/

110 JNS 38/2025

Mezzalira, L. (2021). Building Micro-Frontends. O'Reilly Media, Inc.

Nielsen, C. D. (2015). Investigate availability and maintainability within a microservice
architecture. Aarhus: Department of Computer Science, Aarhus University.

Pavlenko, A., Askarbekuly, N., Megha, S., & Mazzara, M. (2020). Micro-frontends:
Application of microservices to web front-ends. Journal of Internet Services and Information
Security, 10, 49-66

PraJwal, Y., Parekh, J. V., & Shettar, R. (2021). A brief review of micro-frontends. United
International Journal for Research and Technology, 2

Schéffer, E., Mayr, A., Fuchs, J., Sjarov, M., Vorndran, J., & Franke, J. (2019). Microservice-
based architecture for engineering tools enabling a collaborative multi-user configuration of
robot-based automation solutions. Procedia CIRP, 86, 86-91

Yang, C., Liu, C., & Su, Z. (2019). Research and application of micro frontends. In 10P
Conference Series: Materials Science and Engineering

Web Resources

AngularJS. (n.d.). Retrieved from https://docs.angularjs.org

Front-end vs Back-end Developer Difference. (2015). Retrieved from http://frontend-
school.blogspot.com/2015/10/front-end-back-end-developer-difference.html

GeeksforGeeks. (n.d.). Monolithic vs Microservices architecture. Retrieved from
https://www.geeksforgeeks.org/monolithic-vs-microservices-architecture/

Microservices (n.d.), Microservices.io. https://microservices.io/

Nikulina, O., & Khatsko, K. (2023). Method of converting the monolithic architecture of a
front-end application to micro-frontends. Bulletin of National Technical University" KhPI".
Series: System Analysis, Control and Information Technologies, (2 (10)), 79-84.

NPM. (n.d.). Retrieved from https://docs.npmjs.com/

NodeJS. (n.d.). Retrieved from https://nodejs.org/en/docs/

NextJS. (n.d.). Retrieved from https://nextjs.org/docs

O’Reilly. (n.d.). Building Micro-Frontends. Retrieved from
https://www.oreilly.com/library/view/building-micro-frontends/9781492082989/ch04.html

React. (n.d.). Retrieved from https://react.dev/reference/react

Thoughtworks. (n.d.). Micro-frontends. Retrieved from

https://www.thoughtworks.com/radar/techniques/micro-frontends

VuelS. (n.d.). Retrieved from https://vuejs.org/guide/introduction.html

Webpack. (n.d.). Retrieved from https://webpack.js.org/concepts/module-federation/

https://docs.angularjs.org/
http://frontend-school.blogspot.com/2015/10/front-end-back-end-developer-difference.html
http://frontend-school.blogspot.com/2015/10/front-end-back-end-developer-difference.html
https://www.geeksforgeeks.org/monolithic-vs-microservices-architecture/
https://microservices.io/
https://docs.npmjs.com/
https://nodejs.org/en/docs/
https://nextjs.org/docs
https://www.oreilly.com/library/view/building-micro-frontends/9781492082989/ch04.html
https://react.dev/reference/react
https://www.thoughtworks.com/radar/techniques/micro-frontends
https://vuejs.org/guide/introduction.html
https://webpack.js.org/concepts/module-federation/

