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Abstract 

This work examines a model elliptic boundary value problem that models 

anisotropic diffusion inside the unit disc. Such problems arise in a wide 

range of physical application. The differential operator that we consider 

in this work includes a mixed derivative term and a coefficient which 

depends on the spatial variable, which makes this operator particularly 

interesting in the theory of elliptic partial differential equations. We begin 

with the weak formulation of the problem, which is studied in the Sobolev 

space 𝐻0
1(𝛺), and we analyze the associated bilinear form. By using 

several fundamental results from Sobolev spaces, including the Poincaré 

inequality, continuity of linear functionals, and the properties of uniformly 

elliptic matrices, we have shown that our bilinear form satisfies the 

condition to be both continuous and coercive. These analytical results 

enable the direct application of the Lax–Milgram theorem, ensuring the 

existence and uniqueness of a weak solution for any square-integrable 

source term. A complete derivation of the corresponding strong form of 

the partial differential equation is provided by carefully performing all 

integration-by-parts steps, explicitly tracking contributions from variable 

coefficients and mixed derivatives. The methodology presented here forms 

a foundation for further analytical investigations and supplies the 

theoretical framework necessary for numerical approximation techniques. 
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Përmbledhje 

Ky punim shqyrton një problem të ekuacioneve eliptike me kushte kufitare 

i cili përshkruan difuzionin anizotropik brenda rrethit njësi. Probleme të 

tilla kanë një gamë të gjerë aplikimesh në fizikë. Operatori diferencial i 

konsideruar në këtë punë përfshin një term me derivat të përzier dhe një 

koeficient që varet nga variabla hapësinore y, çka e bën këtë një rast 

interesant në fushën e ekuacioneve diferenciale eliptike. Ne fillojmë me 

formulimin e dobët të problemit, i cili studiohet në hapësirën Sobolev, dhe 

analizojmë formën bilineare të lidhur me të. Duke përdorur njohuri të 

rëndësishme nga teoria e hapësirave Sobolev, përfshirë inekuacionin 

Poincaré-së, vazhdimësinë e funksionaleve lineare dhe vetitë e matricave 

uniformisht eliptike, tregojmë se forma jonë bilineare plotëson kushtet për 

të qenë njëkohësisht e vazhdueshme dhe coercive. Këto rezultate analitike 

mundësojnë zbatimin e drejtpërdrejtë të Teoremës së Lax–Milgram, e cila 

garanton ekzistencën dhe unicitetin e një zgjidhjeje të dobët për çdo term 

nga 𝐿2(Ω). Më tej, ne nxjerrim plotësisht formën e plotë të ekuacionit 

diferencial me derivate të pjesshme, duke kryer me kujdes të gjitha hapat 

e integrimit me pjesë, duke ndjekur kontributet nga koeficientët variabël 

dhe derivatet e përziera. Metodologjia e paraqitur këtu shërben si bazë për 

kërkime të mëtejshme analitike dhe ofron kornizën teorike të nevojshme 

për teknikat numerike. 

Fjalë kyçe: formulim variacional, Teorema e Lax–Milgram, formë 

bilineare, mirë–pozueshmëri. 

Introduction 

Elliptic boundary value problems with variable coefficients serve as 

fundamental models in physics and engineering, describing phenomena 

such as heat conduction in non-homogeneous material, or fluid flow 

through porous media. A powerful method in studying such problems is 

the variational analysis, where solutions are seen as functions satisfying a 

weak formulation, which is derived from a suitable bilinear form on a 

Hilbert space. 
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In this work we are going to examine a non-standard bilinear form, which 

is defined one the Sobolev Space 𝐻0
1(Ω), over the unit disc Ω =

{(𝑥, 𝑦); 𝑥2 + 𝑦2 < 1}: 

〈𝑢, 𝑣〉⋄ = ∫ [ 𝑢𝑥𝑣𝑥 + 2 𝑢𝑦𝑣𝑦 + y(𝑢𝑥𝑣𝑦 + 𝑢𝑦𝑣𝑥)]𝑑𝑥𝑑𝑦
Ω

   

Our analysis is focused in two main parts. Firsly, we establish that 〈. , . 〉⋄ 

defines an inner product equivalent to the standard 𝐻0
1- norm, thereby 

equipping 𝐻0
1(Ω) with a new Hilbertian structure which is more adapt to 

the nature of the problem.  

The second part is working with the elliptic form by showing the well-

posedness of the problem: for a given function 𝑓 ∈ 𝐿2(Ω), we apply the 

Lax-Milgram theorem to establish the existence and uniqueness of a weak 

solution 𝑢 ∈ 𝐻0
1(Ω), satisfying the variational equation 

〈𝑢, 𝑣〉⋄ = ∫ 𝑓𝑣𝑑𝑥
Ω

,   for all 𝑣 ∈ 𝐻0
1(Ω), 

and we derive the corresponding second-order elliptic boundary value 

problem explicitly. 

The novelty of this work lies in the explicit variational treatment of the 

elliptic operator with mixed derivatives on the unit disc, including a 

detailed coercivity analysis via eigenvalue estimates. 

Methodology 

Throughout this work we recall several theoretical tools that are essential 

for the analysis and will be used to establish our results. These tools are 

summarized in this section. 

Definition 1. (Robert A. Adams, 2003) 

For an open set Ω ∈ ℝ𝑛,  

𝐻1(Ω) = {𝑢 ∈ 𝐿2(Ω): 𝜕𝑥𝑖
𝑥 ∈ 𝐿2(Ω)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖} 

It is equipped with the norm: 

‖𝑢‖
𝐻1(Ω)
2 = ‖𝑢‖

𝐿2(Ω)
2 + ‖∇𝑢‖

𝐿2(Ω)
2  

The space 𝐻0
1(Ω) is the closure of 𝐶𝑐

∞(Ω) under the 𝐻1 −norm. 
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Definition 2 (Salsa, 2008) 

A linear functional L on a Banach space (𝐻, ‖. ‖𝐻) is continuous if and 

only if it is bounded, i.e., if there ∃𝐶 < ∞, such that  

|𝐿(𝑣)| ≤ 𝐶‖𝑣‖𝐻  , ∀𝑣 ∈ 𝐻 

Definition 3 (Poincaré-Friedrichs inequality) (Sayas, 2019) 

If Ω ⊂ ℝ𝑑−1 × (𝑎, 𝑏) (or, more generally, if Ω is bounded in at least one 

direction, then: 

‖𝑢‖Ω ≤
𝑏 − 𝑎

2
‖∇𝑢‖Ω, ∀𝑢 ∈ 𝐻0

1(Ω) 

Definition 4 (David Gilbarg, 1998) 

A matrix field 𝐴(𝑥) is uniformly elliptic if there exists 𝜆 > 0, such that: 

𝐴(𝑥)𝜉 ⋅ 𝜉 ≥ 𝜆|𝜉|2, ∀𝜉 ∈ ℝ𝑛, ∀𝑥 ∈ Ω 

 

Definition 5  (Bressan, 2012) 

Let 𝐻 be a Hilbert space over the reals and let 𝐵: 𝐻 × 𝐻 → ℝ be a 

continuous bilinear functional. This means that  

𝐵[𝑎𝑢 + 𝑏𝑢′, 𝑣] = 𝑎𝐵[𝑢, 𝑣] + 𝑏𝐵[𝑢′, 𝑣] 

𝐵[𝑢, 𝑎𝑣 + 𝑏𝑣′] = 𝑎𝐵[𝑢, 𝑣] + 𝑏𝐵[𝑢, 𝑣′] 

|𝐵[𝑢, 𝑣]| ≤ 𝐶‖𝑢‖‖𝑣‖  

For some constant C, and all 𝑢, 𝑢′, 𝑣, 𝑣′ ∈ 𝐻, 𝑎, 𝑏 ∈ ℝ. 

Definition 6  (Chipot, 2009) 

Let 𝐻 be a Hilbert space over the reals and let 𝐵: 𝐻 × 𝐻 → ℝ be a 

continuous bilinear functional B is strictly positive definie (coercive), i.e., 

there exists a constant 𝛽 > 0 such that 

𝐵[𝑢, 𝑢] ≥ 𝛽‖𝑢‖2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝐻 

 

Theorem 1 (Lax-Milgram)  (Bressan, 2012),  
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Let 𝐻 be a Hilbert space over the reals and let 𝐵: 𝐻 × 𝐻 → ℝ be a 

continuous bilinear functional. Furthermore the bilinear form is coercive.  

Then, for every 𝑓 ∈ 𝐻, there exists a unique 𝑢 ∈ 𝐻 such that  

𝐵[𝑢, 𝑣] = (𝑓, 𝑣) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝐻. 

Moreover,  

‖𝑢‖ ≤ 𝛽−1‖𝑓‖. 

Analysis and discussions 

The problem is set in the domain Ω = {(𝑥, 𝑦); 𝑥2 + 𝑦2 < 1} which denotes 

the unit disc in ℝ2. We work in the Sobolev space 𝐻0
1(Ω), which is defined 

as the closure of 𝐶𝑐
∞(Ω) with respect to the norm: 

‖𝑢‖𝐻1(Ω) = (∫ (|∇u|2 + 𝑢2)𝑑𝑥𝑑𝑦
Ω

)

1/2

 

By the Poincaré inequality, for all 𝑢 ∈ 𝐻0
1(Ω),  

‖𝑢‖𝐿2(Ω) ≔ ‖∇𝑢‖𝐿2(Ω) 

Is equivalent to ‖𝑢‖𝐻1(Ω)on 𝐻0
1(Ω), so we equip it with this norm. 

The bilinear form is defined as: 

𝐵[𝑢, 𝑣] = 〈𝑢, 𝑣〉⋄ = ∫ [ 𝑢𝑥𝑣𝑥 + 2 𝑢𝑦𝑣𝑦 + y(𝑢𝑥𝑣𝑦 + 𝑢𝑦𝑣𝑥)]𝑑𝑥𝑑𝑦
Ω

 

Which can be written equivalently in the form: 

𝐵[𝑢, 𝑣] = ∫ 𝐴(𝑦)∇𝑢 ∙ ∇𝑣 𝑑𝑥𝑑𝑦
Ω

, 𝑤ℎ𝑒𝑟𝑒 𝐴(𝑦) = (
1 𝑦
𝑦 2

) 

Firstly, we must prove that 〈. , . 〉⋄ is indeed an inner product on 𝑋 = 𝐻0
1(Ω), 

which makes X a Hilbert space. 

An inner product must satisfy the following properties (Evans, 2010): 

1. Linearity: ⟨𝑎𝑢 + 𝑏𝑣, 𝑤⟩⋄ = 𝑎⟨𝑢, 𝑤⟩⋄ + 𝑏⟨𝑣, 𝑤⟩⋄ for all 𝑢, 𝑣, 𝑤 ∈
𝑋 and all scalars 𝑎, 𝑏. 

This comes from the fact that both the integral and partial derivatives are 

linear operators. So, we have the following result: 
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⟨𝑎𝑢 + 𝑏𝑣, 𝑤⟩⋄ = ∫ [(𝑎𝑢 + 𝑏𝑣)𝑥𝑤𝑥 + 2 (𝑎𝑢 + 𝑏𝑣)𝑦𝑤𝑦
Ω

+ y((𝑎𝑢 + 𝑏𝑣)𝑥𝑤𝑦 + (𝑎𝑢 + 𝑏𝑣)𝑦𝑤𝑥)]𝑑𝑥𝑑𝑦  

= ∫ [(𝑎𝑢𝑥 + 𝑏𝑣𝑥)𝑤𝑥 + 2 (𝑎𝑢𝑦 + 𝑏𝑣𝑦)𝑤𝑦
Ω

+ y ((𝑎𝑢𝑥 + 𝑏𝑣𝑥)𝑤𝑦 + (𝑎𝑢𝑦 + 𝑏𝑣𝑦)𝑤𝑥)] 𝑑𝑥𝑑𝑦  

= 𝑎 ∫ [(𝑢𝑥𝑤𝑥 + 2𝑢𝑦𝑤𝑦) + y(𝑢𝑥𝑤𝑦 + 𝑢𝑦𝑤𝑥)]𝑑𝑥𝑑𝑦
Ω

+ 

+ 𝑏 ∫ [(𝑣𝑥𝑤𝑥 + 2 𝑣𝑦𝑤𝑦) + y(𝑣𝑥𝑤𝑦 + 𝑣𝑦𝑤𝑥)]𝑑𝑥𝑑𝑦 
Ω

= 

= 𝑎⟨𝑢, 𝑤⟩⋄ + 𝑏⟨𝑣, 𝑤⟩⋄. 
 

2. Symmetry: ⟨𝑢, 𝑣⟩⋄ = ⟨𝑣, 𝑢⟩⋄ for all u, 𝑣 ∈ 𝑋.  

〈𝑢, 𝑣〉⋄ = ∫ [ 𝑢𝑥𝑣𝑥 + 2 𝑢𝑦𝑣𝑦 + y(𝑢𝑥𝑣𝑦 + 𝑢𝑦𝑣𝑥)]𝑑𝑥𝑑𝑦
Ω

=

= ∫ [𝑣𝑥 𝑢𝑥 + 2 𝑣𝑦𝑢𝑦 + y(𝑣𝑥𝑢𝑦 + 𝑣𝑦𝑢𝑥)]𝑑𝑥𝑑𝑦
Ω

= 〈𝑣, 𝑢〉⋄ 

3. Positivity: ⟨𝑢, 𝑢⟩⋄ ≥ 0 for all 𝑢 ∈ 𝑋, with equality if and only if 

𝑢 = 0 

〈𝑢, 𝑢〉⋄ = ∫ [ 𝑢𝑥
2 + 2 𝑢𝑦

2 + 𝑦(𝑢𝑥𝑢𝑦 + 𝑢𝑦𝑢𝑥)]𝑑𝑥𝑑𝑦
Ω

= ∫ [ 𝑢𝑥
2 + 2 𝑢𝑦

2 + 2y𝑢𝑥𝑢𝑦]𝑑𝑥𝑑𝑦
Ω

= ∫ [ (𝑢𝑥 + 𝑦𝑢𝑦)
2

+ 𝑢𝑦
2(2 − 𝑦2)] 𝑑𝑥𝑑𝑦

Ω

≥ 0 

This result holds since domain is the unit disc. 

Furthermore, let’s suppose that ⟨𝑢, 𝑢⟩⋄ = 0, so the last integral is 0 only if 

both terms are 0, 𝑢𝑥 + 𝑦𝑢𝑦 = 0, 𝑎𝑛𝑑 𝑢𝑦 = 0 𝑖f and only if 𝑢𝑥 = 0, 𝑢𝑦 =

0 → 𝑢 = 0. 

Now we use the inner product to define the norm ‖𝑢‖⋄ = √〈𝑢, 𝑢〉⋄  

From the identity 𝑢𝑥
2 + 2 𝑢𝑦

2 + 2y𝑢𝑥𝑢𝑦 = (𝑢𝑥 + 𝑦𝑢𝑦)
2

+ 𝑢𝑦
2(2 − 𝑦2) we 

have the bounds: 𝑢𝑥
2 + 2 𝑢𝑦

2 + 2y𝑢𝑥𝑢𝑦 ≤ 3(𝑢𝑥
2 + 𝑢𝑦

2) since |𝑦| ≤ 1 

Integrating over Ω yields  
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‖∇𝑢‖2

𝐿2(Ω) ≤ ‖𝑢‖2
⋄ ≤ 3‖∇𝑢‖2

𝐿2(Ω) 

As a result, we have that‖. ‖⋄ is equivalent to the standard norm. Since 

𝐻0
1(Ω) is complete under ‖∇𝑢‖𝐿2(Ω)it is also complete under this norm as 

well. Hence 𝐻0
1(Ω) is a Hilbert space.  

With the Hilbert space structure of (𝐻0
1(Ω), 〈. , . 〉⋄) already shown, we now 

continue with the associated variational problem. Given 𝑓 ∈ 𝐿2(Ω) we 

seek for a unique 𝑢 ∈ 𝐻0
1(Ω) such that  

〈𝑢, 𝑣〉⋄ = ∫ 𝑓𝑣𝑑𝑥𝑑𝑦
Ω

  ∀𝑢 ∈ 𝐻0
1(Ω) 

For us to show the well-posedness of this weak formulation we have to 

show that it satisfies the conditions of the Lax-Milgram Theorem. 

From our problem we can take as the required bilinear form  

𝐵[𝑢, 𝑣] = 〈𝑢, 𝑣〉⋄ and 𝐹(𝑣) = ∫ 𝑓𝑣𝑑𝑥
Ω

dy. 

From Definition 5 we have to show that it satisfies the condition to be 

continuous, we have to show the existence of a constant 𝐶, such that  

|𝐵[𝑢, 𝑣]| ≤ 𝐶‖𝑢‖‖𝑣‖  

By using the Cauchy-Schwarz ineqaulity and the bound |y| ≤ 1 in Ω we 

have: 

|𝐵[𝑢, 𝑣]| = |〈𝑢, 𝑣〉⋄| = |∫ [ 𝑢𝑥𝑣𝑥 + 2 𝑢𝑦𝑣𝑦 + y(𝑢𝑥𝑣𝑦 + 𝑢𝑦𝑣𝑥)]𝑑𝑥𝑑𝑦
Ω

|

≤ ∫ |𝑢𝑥𝑣𝑥| + 2 |𝑢𝑦𝑣𝑦| + |y||(𝑢𝑥𝑣𝑦 + 𝑢𝑦𝑣𝑥)|𝑑𝑥𝑑𝑦
Ω

≤ 3 ∫ (|𝑢𝑥|2 + |𝑢𝑦|
2

)
1/2

 (|𝑣𝑥|2 +  |𝑣𝑦|
2

)
1/2

𝑑𝑥𝑑𝑦
Ω

≤  3 ‖∇𝑢‖𝐿2 ∙ ‖∇𝑣‖𝐿2 

Using ‖∇𝑢‖2
𝐿2(Ω) ≤ ‖𝑢‖2

⋄ ≤ 3‖∇𝑢‖2
𝐿2(Ω) (shown above), we have 

‖∇𝑢‖𝐿2 ≤ ‖𝑢‖⋄ and similarly we have for v. Hence  

|𝐵[𝑢, 𝑣]| ≤ 3‖𝑢‖‖𝑣‖ 
 

From definition 6 in order to show that this bilinear form is coercive we 

have to show that there exists a constant 𝛼 > 0 such that 



212                                                             JNS 38/2025 

 

𝐵[𝑢, 𝑢] ≥ 𝛼‖∇𝑢‖
𝐿2(Ω)
2    ∀ 𝑢 ∈ 𝐻0

1(Ω) 

 

𝐵[𝑢, 𝑢] = ∫ [ 𝑢𝑥
2 + 2 𝑢𝑦

2 + 𝑦(𝑢𝑥𝑢𝑦 + 𝑢𝑦𝑢𝑥)]𝑑𝑥𝑑𝑦
Ω

= ∫ [ 𝑢𝑥
2 + 2 𝑢𝑦

2 + 2y𝑢𝑥𝑢𝑦]𝑑𝑥𝑑𝑦
Ω

= ∫ (∇𝑢)𝑇𝐴(𝑦)∇ 𝑢𝑑𝑥𝑑𝑦
Ω

 

with 𝐴(𝑦) = (
1 𝑦
𝑦 2

). 

So, we have that at each point (𝑥, 𝑦) ∈ Ω the integrand is: 

𝑄𝑦(𝜉) ≔ 𝜉𝑇𝐴(𝑦)𝜉 = 𝜉1
2 + 2𝜉2

2 + 2𝑦𝜉1𝜉2  

Where 𝜉 = (𝜉1, 𝜉2) ∈ ℝ2. We want a lower bound of 𝑄𝑦(𝜉) in terms of 

|𝜉|2, ∀|𝑦| ≤ 1. 
That is, we want a constant 𝛼 > 0 such that  

𝜉𝑇𝐴(𝑦)𝜉 ≥ 𝛼|𝜉|2, ∀𝜉 ∈ ℝ2, ∀|𝑦| ≤ 1 
Analyzing matrix A, which is a symmetric matrix, we know that it is 

diagonalizable with real eigenvalues, and furthermore for any 𝜉 ≠ 0,  
𝜉𝑇𝐴(𝑦)𝜉

|𝜉|2
 

Takes values between the smallest and the largest eigenvalues of 𝐴(𝑦). 

So, after finding the eigenvalues of this matrix we have the following 

result: 

𝜆𝑚𝑎𝑥(𝑦) =
3 + √1 + 4𝑦2

2
,  𝜆𝑚𝑖𝑛(𝑦) =

3 − √1 + 4𝑦2

2
,  

Now we need a lower bound on  𝜆𝑚𝑖𝑛(𝑦), ∀|𝑦| ≤ 1. 

Since we are working in the unit disc we have the following result: 

𝑦2 ∈ [0,1], so, the term 1 + 4𝑦2 ∈ [1,5] → √1 + 4𝑦2 ∈ [1, √5] 
The map 

𝜙(𝑡) =
3 − 𝑡

2
 

is decreasing in t. So, the smallest value of  𝜆𝑚𝑖𝑛(𝑦) = 𝜙(√1 + 4𝑦2)  

occurs when √1 + 4𝑦2 is largest, i.e. when 𝑦2 = 1. 
Hence,  
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 𝜆𝑚𝑖𝑛(𝑦) ≥
3 − √5

2
≔ 𝛼 > 0, ∀|𝑦| ≤ 1 

Furthermore, we have a uniform ellipticity constant  

𝛼 =
3 − √5

2
 

 

We will use this part for coercivity, since we have for each fixed 𝑦 and any 

vector 𝜉: 
𝜉𝑇𝐴(𝑦)𝜉 ≥ 𝜆𝑚𝑖𝑛(𝑦)|𝜉|2 ≥ 𝛼|𝜉|2 

By applying this with 𝜉 = ∇𝑢(𝑥, 𝑦) pointwise we get: 

(∇𝑢)𝑇𝐴(𝑦)∇𝑢 ≥ 𝛼|∇𝑢|2  ∀(𝑥, 𝑦) ∈ Ω 

Integrating over Ω we get: 

𝐵[𝑢, 𝑢] = ∫ (∇𝑢)𝑇𝐴(𝑦)∇𝑢 𝑑𝑥𝑑𝑦
Ω

≥ 𝛼 ∫ |∇𝑢|2𝑑𝑥𝑑𝑦
Ω

= 𝛼||∇𝑢||
𝐿2(Ω)

2
 

 

Which is exactly what we needed for coercivity. 

The last condition that we must check is the continuity of the linear 

functional: 

𝐿(𝑣) = ∫ 𝑓𝑣 𝑑𝑥𝑑𝑦
Ω

 

Which means we have to show existence of a constant 𝐶 > 0, such that 

∀𝑣 ∈ 𝐻0
1(Ω):  

|𝐿(𝑣)|≤ 𝐶||𝑣||𝐻  
But since, by using the Poincaré inequality (Evans, 2010) we get:  

|𝐿(𝑣)| ≤ ‖𝑓‖𝐿2‖𝑣‖𝐿2 ≤ 𝐶𝑃 ‖𝑓‖𝐿2‖∇𝑣‖𝐿2 = 𝐶‖𝑣‖𝐻 

Now we have all the conditions of Lax-Milgram theorem satisfied, and as 

a result we have showin that there exist a unique 𝑢 ∈ 𝐻0
1(Ω) such that: 

𝐵[𝑢, 𝑣] = 𝐿(𝑣),    ∀𝑣 ∈ 𝐻0
1(Ω) 

This is the weak solution to the PDE. 

After showing all this, which guarantees the existence of the weak solution 

we have to find the corresponding elliptic PDE that this weak solution 

actually satisfies. 
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For this part, we choose test fucntion with compact support 𝑣 ∈ 𝐶𝑐

∞ (Ω). 

Since these function 𝑣 vanishes on 𝜕Ω, all boundary terms in integration 

by parts disappear. 

By integrating now each term by parts we compute the following result. 

∫ 𝑢𝑥𝑣𝑥
Ω

𝑑𝑥𝑑𝑦 = − ∫ 𝑢𝑥𝑥𝑣𝑑𝑥𝑑𝑦
Ω

 

For this we have used the fact that: 

𝜕

𝜕𝑥
(𝑢𝑥𝑣) = 𝑢𝑥𝑥𝑣 + 𝑢𝑥𝑣𝑥 

And therefore integrating over Ω we have: 

∫ 𝜕𝑥(𝑢𝑥𝑣)
Ω

𝑑𝑥𝑑𝑦 = ∫ (𝑢𝑥𝑥𝑣 + 𝑢𝑥𝑣𝑥)𝑑𝑥𝑑𝑦
Ω

 

By applying divergence theorem: 

∫ 𝜕𝑥(𝑢𝑥𝑣)𝑑𝑥𝑑𝑦 =
Ω

∫ 𝑢𝑥𝑣 𝑛𝑥𝑑𝑠
∂Ω

 

But 𝑣 = 0 𝑜𝑛 𝜕Ω, so the boundary term is zero. 

Therefore we get: 

∫ 𝑢𝑥𝑣𝑥
Ω

𝑑𝑥𝑑𝑦 = − ∫ 𝑢𝑥𝑥𝑣𝑑𝑥𝑑𝑦
Ω

 

Similarly we have: 

∫ 2𝑢𝑦𝑣𝑦𝑑𝑥𝑑𝑦
Ω

= −2 ∫ 𝑢𝑦𝑦𝑣𝑑𝑥𝑑𝑦
Ω

 

For the last two terms we have: 

∫ 𝑦𝑢𝑥𝑣𝑦𝑑𝑥𝑑𝑦
Ω

= − ∫ (𝑦𝑢𝑥𝑦 + 𝑢𝑥)𝑣𝑑𝑥𝑑𝑦
Ω

 

∫ 𝑦𝑢𝑦𝑣𝑥𝑑𝑥𝑑𝑦
Ω

= − ∫ 𝑦𝑢𝑥𝑦𝑣𝑑𝑥𝑑𝑦
Ω
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By puttinng everything together now we can find the equation in the 

following form: 

𝐵[𝑢, 𝑣] = ∫ [ 𝑢𝑥
2 + 2 𝑢𝑦

2 + 𝑦(𝑢𝑥𝑢𝑦 + 𝑢𝑦𝑢𝑥)]𝑑𝑥𝑑𝑦
Ω

 

𝐵[𝑢, 𝑣] = − ∫ 𝑢𝑥𝑥𝑣𝑑𝑥𝑑𝑦
Ω

− 2 ∫ 𝑢𝑦𝑦𝑣𝑑𝑥𝑑𝑦
Ω

− ∫ (𝑦𝑢𝑥𝑦 + 𝑢𝑥)𝑣𝑑𝑥𝑑𝑦
Ω

− ∫ 𝑦𝑢𝑥𝑦𝑣𝑑𝑥𝑑𝑦
Ω

 

Thus we have:   

𝐵[𝑢, 𝑣] = − ∫ (𝑢𝑥𝑥 + 2𝑢𝑦𝑦 + 2𝑦𝑢𝑥𝑦 + 𝑢𝑥)𝑣𝑑𝑥𝑑𝑦
Ω

 

From the weak formulation we have 𝐵[𝑢, 𝑣] = ∫ 𝑓𝑣
Ω

 

And since this holde for all 𝑣 ∈ 𝐶𝑐
∞ (Ω), we get the PDE: 

−𝑢𝑥𝑥 − 2𝑢𝑦𝑦 − 2𝑦𝑢𝑥𝑦 − 𝑢𝑥 = 𝑓  𝑖𝑛 Ω 

The homogeneous Dirichlet boundary condition is implicitly imposed by 

the choice of the space 𝐻0
1(Ω) 

𝑢 = 0  𝑜𝑛 𝜕Ω 

Collecting these reaults, we obtrain the following elliptic boundary value 

problem: 

{
−𝑢𝑥𝑥 − 2𝑢𝑦𝑦 − 2𝑦𝑢𝑥𝑦 − 𝑢𝑥 = 𝑓,              (𝑥, 𝑦) ∈ Ω

𝑢 = 0                                                               (𝑥, 𝑦) ∈ 𝜕Ω 
 

Conclusions 

In this work we have provided the complete variational and functional 

analytic study of an elliptic boundary value problem posed on the unit disc. 

By formulating the problem in Sobolev space 𝐻0
1(Ω), we have analyzed in 

a rigorous way the bilinear form which is associated with the operator, and 

it satisfies all the requirements of continuity and coercivity. We have 

shown continuity by using classical inequalities like Poincaré and Cauchy-
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Schwarz. As for coercivity we have used the eigenvalues of the matrix 

obtained by bilinear form, which remain uniformly positive in the domain.  

We have applied Lax-Milgram theorem, and we guaranteed the well 

posedness of the problem, which ensures stability and robustness with 

respect to the data. Throughout integration by parts, we obtained the 

explicit PDE which is satisfied by u.  

The result achieved provide both a rigorous theoretical understanding of 

the operator, from which numerical approximation methods (Monk, 1991) 

can be developed. Consequently, this work serves for future investigations 

and computation studies of even more complex form. 
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