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Abstract

This work examines a model elliptic boundary value problem that models
anisotropic diffusion inside the unit disc. Such problems arise in a wide
range of physical application. The differential operator that we consider
in this work includes a mixed derivative term and a coefficient which
depends on the spatial variable, which makes this operator particularly
interesting in the theory of elliptic partial differential equations. We begin
with the weak formulation of the problem, which is studied in the Sobolev
space H}(2),and we analyze the associated bilinear form. By using
several fundamental results from Sobolev spaces, including the Poincaré
inequality, continuity of linear functionals, and the properties of uniformly
elliptic matrices, we have shown that our bilinear form satisfies the
condition to be both continuous and coercive. These analytical results
enable the direct application of the Lax—-Milgram theorem, ensuring the
existence and uniqueness of a weak solution for any square-integrable
source term. A complete derivation of the corresponding strong form of
the partial differential equation is provided by carefully performing all
integration-by-parts steps, explicitly tracking contributions from variable
coefficients and mixed derivatives. The methodology presented here forms
a foundation for further analytical investigations and supplies the
theoretical framework necessary for numerical approximation techniques.
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Pérmbledhje

Ky punim shqgyrton njé problem té ekuacioneve eliptike me kushte kufitare
i cili pérshkruan difuzionin anizotropik brenda rrethit njési. Probleme té
tilla kané njé gamé té gjeré aplikimesh né fiziké. Operatori diferencial i
konsideruar né kété puné pérfshin njé term me derivat té pérzier dhe njé
koeficient qé varet nga variabla hapésinore y, cka e bén kété njé rast
interesant né fushén e ekuacioneve diferenciale eliptike. Ne fillojmé me
formulimin e dobét té problemit, i cili studiohet né hapésirén Sobolev, dhe
analizojmé formén bilineare té lidhur me té. Duke pérdorur njohuri té
réndésishme nga teoria e hapésirave Sobolev, pérfshiré inekuacionin
Poincaré-sé, vazhdimésiné e funksionaleve lineare dhe vetité e matricave
uniformisht eliptike, tregojmé se forma joné bilineare plotéson kushtet pér
té gené njékohésisht e vazhdueshme dhe coercive. Kéto rezultate analitike
mundésojné zbatimin e drejtpérdrejté té Teoremés sé Lax—Milgram, e cila
garanton ekzistencén dhe unicitetin e njé zgjidhjeje té dobét pér ¢do term
nga L, (). Mé tej, ne nxjerrim plotésisht formén e ploté té ekuacionit
diferencial me derivate té pjesshme, duke kryer me kujdes té gjitha hapat
e integrimit me pjesé, duke ndjekur kontributet nga koeficientét variabél
dhe derivatet e pérziera. Metodologjia e paraqitur kétu shérben si bazé pér
kérkime té métejshme analitike dhe ofron kornizén teorike té nevojshme
pér teknikat numerike.

Fjalé kyce: formulim variacional, Teorema e Lax-Milgram, formé
bilineare, miré—pozueshméri.

Introduction

Elliptic boundary value problems with variable coefficients serve as
fundamental models in physics and engineering, describing phenomena
such as heat conduction in non-homogeneous material, or fluid flow
through porous media. A powerful method in studying such problems is
the variational analysis, where solutions are seen as functions satisfying a
weak formulation, which is derived from a suitable bilinear form on a
Hilbert space.
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In this work we are going to examine a non-standard bilinear form, which
is defined one the Sobolev Space H(} (Q), over the unit disc Q =

{Ce,y);x* +y2 <1}
(w,v), = f [uxvx +2u,v, + y(uxvy + uyvx)]dxdy
Q

Our analysis is focused in two main parts. Firsly, we establish that (.,.),
defines an inner product equivalent to the standard H3- norm, thereby
equipping H} () with a new Hilbertian structure which is more adapt to
the nature of the problem.

The second part is working with the elliptic form by showing the well-
posedness of the problem: for a given function f € L2(£), we apply the
Lax-Milgram theorem to establish the existence and uniqueness of a weak
solution u € H} (), satisfying the variational equation

(u,v), = fﬂfvdx, for all v € H}(Q),

and we derive the corresponding second-order elliptic boundary value
problem explicitly.

The novelty of this work lies in the explicit variational treatment of the
elliptic operator with mixed derivatives on the unit disc, including a
detailed coercivity analysis via eigenvalue estimates.

Methodology

Throughout this work we recall several theoretical tools that are essential
for the analysis and will be used to establish our results. These tools are
summarized in this section.

Definition 1. (Robert A. Adams, 2003)
For an open set Q € R",
H'(Q) = {u € L*(Q): 0,,x € L>(Q)for all i}
It is equipped with the norm:
||U||12_I1(Q) = ”u”?}(g) + ”vu”iZ(Q)

The space H}(Q) is the closure of C°(Q) under the H! —norm.
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Definition 2 (Salsa, 2008)

A linear functional L on a Banach space (H,||.||y) is continuous if and
only if it is bounded, i.e., if there 3C < oo, such that

IL)| < Clvlly Vv € H
Definition 3 (Poincaré-Friedrichs inequality) (Sayas, 2019)
If O c R%1 x (a, b) (or, more generally, if Q is bounded in at least one
direction, then:

b—a
lullg < — IVullg, Vu € Hg ()

Definition 4 (David Gilbarg, 1998)
A matrix field A(x) is uniformly elliptic if there exists A > 0, such that:

A(x)E - & = A€)3,VE ERY, VX € Q

Definition 5 (Bressan, 2012)

Let H be a Hilbert space over the reals and let B:H X H - R be a
continuous bilinear functional. This means that

Blau + bu',v] = aB[u,v] + bB[u',v]
Blu,av + bv'] = aB[u,v] + bB[u, v']
|B[u, v]| < Cllullllvl
For some constant C, and all u, u’,v,v' € H,a,b € R.
Definition 6 (Chipot, 2009)

Let H be a Hilbert space over the reals and let B:H X H - R be a
continuous bilinear functional B is strictly positive definie (coercive), i.e.,
there exists a constant § > 0 such that

Blu,u] = Bllull* for allu € H

Theorem 1 (Lax-Milgram) (Bressan, 2012),
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Let H be a Hilbert space over the reals and let B:H X H - R be a
continuous bilinear functional. Furthermore the bilinear form is coercive.

Then, for every f € H, there exists a unique u € H such that
Blu,v] = (f,v) forallv € H.
Moreover,
lull < 87HIfI.
Analysis and discussions

The problem is set in the domain Q = {(x, y); x? + y? < 1} which denotes
the unit disc in R?, We work in the Sobolev space H& (), which is defined
as the closure of C;°(Q) with respect to the norm:

1/2
lull i) = (j (IVul? + uz)dxdy)
Q
By the Poincaré inequality, for all u € H}(Q),
ull 2y = Vull2cq
Is equivalent to |[u]|;1(q)on H}(Q), so we equip it with this norm.

The bilinear form is defined as:
Blu,v] = (u,v), = j [ weve + 2 uyvy + y(uevy + uyvy)|dxdy
Q
Which can be written equivalently in the form:

y 2

Firstly, we must prove that (., . ), is indeed an inner product on X = H}(Q),
which makes X a Hilbert space.

Blu,v] = fA(y)Vu Vv dxdy,where A(y) = (1 y)
Q

An inner product must satisfy the following properties (Evans, 2010):

1. Linearity: (au + bv,w), = a{u,w), + b{(v,w), for all w,v,w €
X and all scalars a, b.
This comes from the fact that both the integral and partial derivatives are
linear operators. So, we have the following result:
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(au + bv,w), = f [(au + bv),w, + 2 (au + bv),w,
+ y!()(au + bv),wy, + (au + bv),w,)|dxdy
= f [(aux + b )wy + 2 (au, + bvy)w,
’ +y ((aux + bv)w, + (au, + bvy)wx)] dxdy
~a fﬂ[(uxwx + 2uywy) + y(owy + ) |dxdy +

+ b] [(vewy + 2 v,wy) + y(v,wy, + vyw,)]dxdy =
Q

= a(u,w), + b(v, w),.
2. Symmetry: (u,v), = (v,u), forallu,v € X.
(w,v), = f [uxvx + 2 uyvy, + y(uxvy + uyvx)]dxdy =
Q
= f [ve ue + 2 vyuy + y(veuy, + vyuy)|dxdy = (v,u),
Q
3. Positivity: (u,u), = 0 for all u € X, with equality if and only if

u=20

(u,u), = ] [u2 +2u2 + y(uyu, +uyu,)|dxdy
Q
= J [u2 +2u2 + 2yu,uy|dxdy
Q

= f [ (uy + yuy)2 +u5 (2 - yz)] dxdy =0
This result holds since do%nain 1s the unit disc.
Furthermore, let’s suppose that (u, u), = 0, so the last integral is 0 only if
both terms are 0, u, + yu, = 0,and u,, = 0 if and only if u, = 0,u, =
0-u=0.
Now we use the inner product to define the norm ||ul|, = /{(u, u),
From the identity uZ + 2 u2 + 2yu,u, = (u, + yuy)2 +us(2 —y?) we
have the bounds: u? + 2 u3 + 2yu,u, < 3(uz + u3) since |y| < 1
Integrating over (1 yields
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VUl 200 < lull?, < 319Ul
As a result, we have that||. ||, is equivalent to the standard norm. Since
H}(Q) is complete under ||Vul| 12(qit is also complete under this norm as

well. Hence Hj (Q) is a Hilbert space.

With the Hilbert space structure of (H2(Q),(.,.),) already shown, we now
continue with the associated variational problem. Given f € L?(Q)) we
seek for a unique u € H}(Q) such that

(u,v), = ffvdxdy vu € H3(Q)
Q
For us to show the well-posedness of this weak formulation we have to
show that it satisfies the conditions of the Lax-Milgram Theorem.
From our problem we can take as the required bilinear form
Blu,v] = (u,v), and F(v) = [ fvdxdy.

From Definition 5 we have to show that it satisfies the condition to be
continuous, we have to show the existence of a constant C, such that
|B[u, v]| < Cllull||lv]

By using the Cauchy-Schwarz ineqaulity and the bound |y| < 1 in Q we
have:

|Blw, v]| = [{w,v),| =

J [ wevy + 2wy + y(wvy, + uyvx)]dxdy‘
Q
< f |u, v, | + 2 |uyvy| + |y||(uxvy + uyvx)|dxdy

Q

1/2 1/2
< 3] (qu|2+ |uy|2) (va|2+ |vy|2) dxdy
Q
< 3||Vull,z - [IVvl| 2

Using IIVuIIZLz(Q) < lull?, < 3||Vu||2L2(Q) (shown above), we have

|IVul|,2 < |lull, and similarly we have for v. Hence
|B[w, v]| < 3|lullllv]l

From definition 6 in order to show that this bilinear form is coercive we
have to show that there exists a constant « > 0 such that
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Blu,u] = aIIVuIIfz(Q) Yu€ H}(Q)

Blu,u] = f [u2 +2u2 + y(uyu, +uyu,)|dxdy
Q
= f [uZ + 2 u2 + 2yu,uy|dxdy
Q
= f (Vuw)TA(y)V udxdy
Q

. 1 vy
with A(y) = (y 2).
So, we have that at each point (x,y) € Q the integrand is:
Qy (&) = ETAW)E = &F + 285 + 2y,
Where ¢ = (¢1,¢,) € R®. We want a lower bound of @, (§) in terms of
€17, vIyl < 1.
That is, we want a constant a > 0 such that
§TAWE 2 alél?,v§ €R?,  V]y[<1
Analyzing matrix A, which is a symmetric matrix, we know that it is
diagonalizable with real eigenvalues, and furthermore for any & # 0,

ETA(Y)E
tHE

Takes values between the smallest and the largest eigenvalues of A(y).
So, after finding the eigenvalues of this matrix we have the following

result:
3441+ 4y? — 1+ 4y?

3
Amax(Y) = 2 » Amin(¥) = 2 )
Now we need a lower bound on A,,;,(y),V]y| < 1.
Since we are working in the unit disc we have the following result:

y? € [0,1], so, the term 1 + 4y? € [1,5] > /1 + 4y2 € [1,V/5]
The map
3—t
B ==
is decreasing in t. So, the smallest value of A, (y) = ¢(y/1 + 4y?)

occurs when /1 + 4y?2 is largest, i.e. when y? = 1.
Hence,
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3-+5

Amin(y)z ==a>0,\7’|y| <1

Furthermore, we have a uniform ellipticity constant
_3-+5
2

a

We will use this part for coercivity, since we have for each fixed y and any
vector ¢:
ETAWE = AminMIE1? = al¢]?
By applying this with ¢ = Vu(x, y) pointwise we get:
(VwWTA()Vu = a|Vul? V(x,y) € O

Integrating over (1 we get:

Blu,u] = f (VW TA(Y)Vu dxdy > aj |Vu|?dxdy = a||Vu||iz(ﬂ)

Q Q

Which is exactly what we needed for coercivity.
The last condition that we must check is the continuity of the linear
functional:

L(v) =J fvdxdy
Which means we have to show exi%tence of a constant C > 0, such that
Vv € Hi(Q):
ILw)|< Cllvllg
But since, by using the Poincaré inequality (Evans, 2010) we get:
IL)| < lIfll2llvilz < Cp lIfll2lIVVll2 = Cllvllg

Now we have all the conditions of Lax-Milgram theorem satisfied, and as
a result we have showin that there exist a unique u € Hg(Q) such that:

Blu,v] = L(v), Vv € H}(Q)
This is the weak solution to the PDE.

After showing all this, which guarantees the existence of the weak solution
we have to find the corresponding elliptic PDE that this weak solution
actually satisfies.
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For this part, we choose test fucntion with compact support v € C2° (Q).
Since these function v vanishes on d(), all boundary terms in integration
by parts disappear.

By integrating now each term by parts we compute the following result.
f Uy Uy dxdy = — f Uy Vdxdy
Q Q
For this we have used the fact that:

I (UxV) = Uy U + Uy

And therefore integrating over () we have:

f Oy (uyv) dxdy = j (UyxV + Uy vy )dxdy
Q Q

By applying divergence theorem:

f (')x(uxv)dxdyzf U,V N, ds
Q a0

But v = 0 on 9Q, so the boundary term is zero.

Therefore we get:

f Uy Uy dxdy = —f Uy Vdxdy
Q Q

Similarly we have:

J 2u, vy, dxdy = —ZJ Uy, vdxdy
Q Q

For the last two terms we have:

f YUy, Uydxdy = —f (Yuyy + uy)vdxdy
Q Q

f yu,vedxdy = — f YUy, vdxdy
Q Q
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By puttinng everything together now we can find the equation in the
following form:

Blu,v] = f [uZ + 2 u2 + y(uyu, + uyu,)|dxdy
Q

Blu,v] = — f Uy vdxdy — 2 f Uy, vdxdy — f (Yuyy + uy)vdxdy
Q Q Q

— j Yy, vdxdy
Q

Thus we have:
Blu,v] = —f (uxx + 2Uyy + 2yUyy, + ux)vdxdy
Q

From the weak formulation we have Blu,v] = [ fv

And since this holde for all v € CZ° (), we get the PDE:
—Uyy — 2Uyy — 2YUyy — Uy = [ iNQ
The homogeneous Dirichlet boundary condition is implicitly imposed by
the choice of the space Hj (Q)
u=0 onadQ

Collecting these reaults, we obtrain the following elliptic boundary value
problem:

{_uxx_zuyy_zyuxy_ux:f: (x,y) €Q
u=20 (x,y) € 00
y

Conclusions

In this work we have provided the complete variational and functional
analytic study of an elliptic boundary value problem posed on the unit disc.
By formulating the problem in Sobolev space H}(£2), we have analyzed in
a rigorous way the bilinear form which is associated with the operator, and
it satisfies all the requirements of continuity and coercivity. We have
shown continuity by using classical inequalities like Poincaré and Cauchy-



216 JNS 38/2025

Schwarz. As for coercivity we have used the eigenvalues of the matrix
obtained by bilinear form, which remain uniformly positive in the domain.

We have applied Lax-Milgram theorem, and we guaranteed the well
posedness of the problem, which ensures stability and robustness with
respect to the data. Throughout integration by parts, we obtained the
explicit PDE which is satisfied by u.

The result achieved provide both a rigorous theoretical understanding of
the operator, from which numerical approximation methods (Monk, 1991)
can be developed. Consequently, this work serves for future investigations
and computation studies of even more complex form.
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