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Abstract 

For better biodiversity conservation we must accurately monitor the insect 

population. As we already know, insects play a key role as pollinators. This is 

not, however, the only useful and crucial process in which they are involved. 

Other useful processes include decomposition, pest control and of course, 

being a food source for other species (Sánchez-Bayo & Wyckhuys, 2019). It is 

very disturbing that insect populations are in decline globally. This decline 

can lead to many environmental consequences, which will subsequently 

translate into economic problems. Traditional methods of monitoring are 

labor-intensive, time-consuming, and prone to error. This paper explores the 

potential of automatic insect counting systems, reviewing the current state of 

technologies, including visual, optical, acoustic, and hybrid sensor-based 

methods. Special attention is given to AI-driven approaches such as YOLO 

(Redmon et al., 2016) and TensorFlow.js, (Smilkov et al., 2019) which enable 

real-time detection and classification in the field.  

Key words: Biodiversity conservation, AI-Driven methods, YOLO (You Only 

Look Once); Real-time detection. 

Përmbledhje 

Për një ruajtje më të mirë të biodiversitetit, ne duhet të monitorojmë me saktësi 

popullatën e insekteve. Siç e dimë tashmë, insektet luajnë një rol kyç si 

pjalmues. Megjithatë, ky nuk është i vetmi proces i dobishëm dhe vendimtar 

në të cilin ato janë të përfshira. Procese të tjera të dobishme përfshijnë 

dekompozimin, kontrollin e dëmtuesve dhe sigurisht, të qenit një burim 

ushqimi për specie të tjera (Sánchez-Bayo & Wyckhuys, 2019). Është shumë 

shqetësuese që popullatat e insekteve janë në rënie globalisht. Kjo rënie mund 

të çojë në shumë pasoja mjedisore, të cilat më pas do të përkthehen në 

probleme ekonomike. Metodat tradicionale të monitorimit kërkojnë shumë 
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punë, kërkojnë kohë dhe janë të prirura për gabime. Ky punim eksploron 

potencialin e sistemeve automatike të numërimit të insekteve, duke shqyrtuar 

gjendjen aktuale të teknologjive, duke përfshirë metodat vizuale, optike, 

akustike dhe hibride të bazuara në sensorë. Vëmendje e veçantë i kushtohet 

qasjeve të drejtuara nga IA si YOLO (Redmon et al., 2016) dhe TensorFlow.js, 

(Smilkov et al., 2019) të cilat mundësojnë zbulimin dhe klasifikimin në kohë 

reale në terren. 

Fjalë kyçe: Ruajtja e biodiversitetit, metodat e drejtuara nga IA, YOLO 

(shikoni vetëm një herë); zbulimi në kohë reale. 

Introduction 

Insects can be spotted everywhere. One of their characteristics is the fact that 

they are the most diverse group of animals on earth. We can count more than 

a million known insects, and for sure there are many more to be discovered 

out there (Sánchez-Bayo & Wyckhuys, 2019). They are fundamental to a 

functional ecosystem. As natural pollinators, they help bio producers to 

heavily rely on them for better food quality and quantity.  

Despite all of these facts, many studies have already proven the sharp decline 

in insect populations. The factors pertaining to this sharp decline are 

numerous, among them we can mention loss of habitat, pesticide use and 

climate change (Sanchez-Bayo & Wyckhuys, 2019). Monitoring their number 

as well as diversity is fundamental and with this data we can better predict 

agricultural trends, but also understand ecosystem health. There are also 

traditional manual methods for monitoring insects that can still be used but 

there are many limitations.  

The main drawback is the requirement for taxonomic expertise, which is very 

slow and extremely expensive. In addition, they are not feasible for large-scale 

or long-term monitoring. Automatic insect counting offers a cost-effective 

solution that can be easily expanded at low cost (Gibb et al., 2019). By 

combining computer vision, acoustic sensors, and AI we can effectively 

monitor insects in their environment at reasonable cost. This paper reviews the 

best practice used for automatic insect counting. and highlights their 

technological innovations, practical examples and future potential 

improvements. 
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1. Methods forautomatic insect counting 

1.1 Vision-based methods (computer vision) 

Computer vision systems rely on footage and deep learning models to detect 

and classify insects. For different projects we already have high-resolution 

cameras installed in the field often as part of camera traps, capturing images 

or video sequences. Then, we analyze gathered data using object detection 

algorithms. The most important object detection algorithms we will explore 

during this paper are YOLO (Redmon et al., 2016; Redmon & Farhadi, 2016; 

Redmon & Farhadi, 2018; Terven et al. 2023), SSD, and Faster R-CNN 

(Girshick, 2015; Ren et al., 2016). 

YOLO (You Only Look Once) models are highly effective. Thanks to their 

speed and accuracy, they allow real-time detection in video streams. YOLO 

models use convolutional neural networks (CNNs) as part of their architecture. 

Based on this architecture, YOLO offers impressive performance for features 

like object detection. Its object detection algorithms are focused on shape, 

color, and pattern detection (Redmon et al., 2016).   

Furthermore, real-time detection systems must offer a balance between 

accuracy and inference speed. In small devices where lack of resources is very 

crucial, models must be as lightweight and efficient as possible. By using 

TensorFlow.js, we could run those models in the browser. We can achieve high 

performance in the browser thanks to WebGL, powering small devices with 

real-time performance, and avoiding powerful server support (Smilkov et al., 

2019). 

TensorFlow.js is a JavaScript library that allows for training in and deployment 

of ML models in the browser and on Node.js. It supports a range of pre-trained 

models and custom model imports via conversion from Keras or TensorFlow 

Saved Model formats. 

Advantages of computer vision: 

 Enables species-level classification. 

 Stores visual data for further analysis. 

 Allows integration with AI for real-time monitoring (Redmon et al., 

2016; Smilkov et al., 2019). 
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Limitations of computer vision: 

 Dependent on lighting and weather conditions. 

 Requires extensive labeled datasets for training. 

 Struggles with overlapping insects or occlusion (Howard et al., 2017). 

1.2 Optical sensor methods 

These methods use simple infrared beam systems to detect insect passage. 

When an insect crosses the beam, it causes a signal interruption, which is 

recorded. This principle is used in light traps and tunnel-based counting 

systems (Gibb et al., 2019). 

Advantages of optical sensor methods: 

 Inexpensive and energy-efficient. 

 Suitable for remote and harsh environments. 

 

Limitations of optical sensor methods: 

 Cannot identify species or estimate size. 

 Prone to false positives from debris or small particles. 

1.3 Bioacoustics methods 

All insects produce their characteristic noise. From the sound of their 

wingbeats, to mating calls, or flight noises. Another modern technique is 

bioacoustics, which identifies and counts insects. It uses microphones and 

sound analysis techniques combined with AI algorithms. As different species 

have different sound features, we can train ML models to adapt to only that 

range of sound features to better target species (Gibb et al., 2019). 

Advantages of bioacoustics methods: 

 Effective for monitoring night-flying and hidden insects. 

 Allow non-invasive observation over large areas. 

Limitations of bioacoustics methods: 

 Susceptible to ambient noise (wind, rain, animals). 

 Difficulty distinguishing overlapping signals. 
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1.4 Hybrid sensor systems 

Each of the outlined methods have their advantages and disadvantages. So, to 

improve accuracy and reliability we created a system that combines all of these 

techniques. These hybrid systems combine multiple sensors—vision, 

acoustics, and environmental. A typical implementation of hybrid combination 

is AMMOD (Automated Multisensor station for Monitoring Of species 

Diversity). Prototypes for so-called AMMOD stations are successfully set up 

in German forests (AMMOD Project, 2022). These are equipped with sensors 

for recording animal sounds and plant emissions, animal cameras for birds, 

mammals and insects, and automated insect and pollen sample collectors for 

monitoring by DNA barcoding. These recordings will be used to generate a 

solid data pool that will enable the analysis of change and possible trends in 

species richness and populations. For instance, we want to use the detected 

species to determine their population and record the change over a long period 

of time. The visual monitoring subsystems of AMMOD (visAMMOD) consist 

of automated insect cameras for collecting images of nocturnal moths, which 

are called moth scanners, and conventional wildlife camera traps for recording 

observations of insects. 

Advantages of hybrid sensor systems: 

 Improved detection accuracy. 

 Capable of species identification and count. 

Limitations of hybrid sensor systems: 

 High cost and complexity. 

 Requires careful calibration and maintenance (AMMOD Project, 

2022). 

2. Use of AI and Data analytics 

Artificial Intelligence has become a central point to automatic insect counting. 

Advanced models like YOLOv8, YOLOv12, SSD, Fast R-CNN, and 

Detectron2 are used to detect insects in images and videos, and offer a high 

accuracy (Ultralytics, 2024; Liu et al., 2016). These object detection models 

are also very user friendly. Beyond their object detection they also draw 

bounding boxes and classify species properly. Training these models requires 

annotated datasets containing diverse images of insects under different 
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conditions. Transfer learning where pre-trained models are fine-tuned on 

insect datasets—helps overcome the challenge of limited data. 

By using TensorFlow.js we can deploy this model directly in browser. This 

way we empower not only researchers but also citizens to run AI models on 

low-powered devices, such as smartphones and laptops without internet access 

or cloud computing. (Smilkov et al., 2019). 

2.1 YOLO (You Only Look Once) 

Object detection is now a foundation task in computer vision. It offers 

machines the feature to identify and localize objects within images or video 

streams. Early algorithms like R-CNN and its derivatives have an acceptable 

level of accuracy. However, YOLO (especially later versions) have a higher 

accuracy rate. Furthermore, YOLO has a lower computational cost due to its 

innovative architecture. The YOLO family achieved this reduction in 

computational cost by treating object detection as a single regression problem 

(Redmon et al., 2016). Also, YOLO evolved through multiple versions, each 

bringing new features and substantial architecture and performance 

improvements (Ultralytics, 2024). 

2.2 YOLO Direct Export to TensorFlow.js 

From 2024, Ultralytics enabled a feature to directly export the model to 

multiple formats, including TensorFlow.js. This enhancement avoids the need 

for the extra step needed previously to convert it to ONNX. So, the conversion 

process became simpler, and the model structure is lightweight and optimized 

for the browser environment (Ultralytics, 2024). 

 

from ultralytics import YOLO 

# Load YOLOv8/v11 model 

model = YOLO("yolov8s.pt")  # or yolov11s.pt 

# Export directly to TensorFlow.js 

model.export(format="tfjs") 

This command generates a TensorFlow.js-compatible model in the following 

structure: 
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The folder ‘yolov8n_tfjs’ that has two files ‘model.json’ and ‘group1-

shard1of1.bin’ 

Then we can load files into the browser using JavaScript: 

const myModel = await tf.loadGraphModel('yolov8n_tfjs/model.json'); 

This feature enables real-time object detection via web interface using a 

smartphone or webcam. 

2.3 SSD (Single Shot MultiBox Detector) 

Single Shot MultiBox Detector (SSD), introduced by Liu et al. (2016) and 

improved for small object detection (Kang & Park, 2023; Shen et al., 2024; 

Wang, et al., 2024) is another fast object detection framework like YOLO but 

with notable architectural differences. Like YOLO, SSD performs detection in 

a single forward pass of the network. However, SSD uses multiple feature 

maps of different resolutions to detect objects of various sizes, improving the 

detection of smaller objects—a common limitation in YOLOv1. 

SSD defines a set of default bounding boxes (anchor boxes) for each feature 

map location, with different aspect ratios and scales, allowing the model to 

predict both object class scores and box refinements simultaneously. 

2.4 COCO-SSD 

COCO-SSD is another object detection model. Its architecture is based on 

SSD and as a dataset it uses COCO (Common Objects in Context). The best 

feature it has that it is lightweight. It is this feature that makes it the perfect 

choice for browser-based inference using TensorFlow.js, thus making it ideal 

for real-time applications on client devices without needing powerful server 

processing (Howard et al., 2017). 

Overall, COCO-SSD uses MobileNet as its backbone architecture, which 

balances accuracy and speed well—ideal for web or mobile apps. It is being 

used widely in real-time object detection tasks in educational and citizen 

science applications. 

2.5 Comparison between YOLO, SSD, and COCO-SSD 

SSD and its COCO-SSD variant represent a parallel lineage to YOLO in the 

object detection space. However, YOLO, with its latest versions, is dominating 

the real-time detection market. On the other hand, SSD remains a very 

competitive alternative, especially for lightweight and browser-based 
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scenarios. Furthermore, COCO-SSD is a ready-to-use model for 

TensorFlow.js applications, offering a perfect balance between performance 

and portability. YOLO, SSD and all their variants create a solid tool for a large 

range of deployment environments. We could use them in cutting edge server 

environments in addition to web-browser environments (Howard et al., 2017). 

Applications Include: 

 Real-time insect monitoring in agricultural fields. 

 Citizen science and educational tools. 

 Rapid biodiversity assessments in remote locations. 

Case Study: In a dragonfly monitoring project, YOLOv11 converted to 

TensorFlow.js enabled species detection and counting through a web interface 

using the operator’s webcam. The inexpensive, browser-based tool allows 

citizen scientists to contribute to biodiversity monitoring without specialized 

hardware or software (Ultralytics, 2024). 

3. Comparison of methods 

Table 1. Methods comparison 

Method Cost Species 

ID 
Energy 

Use 
Ideal For Limitations 

Computer 

Vision 
Medium–

High 
Yes Medium Monitoring 

in species-

level 

Lighting 

dependency, 

dataset size 

Optical 

Sensors 
Low No Low Abundance 

tracking in 

remote 

areas 

No species 

info, false 

positives 

Bioacoustic 

Sensors 
Medium Partial Low Night 

insects, 

hidden spp. 

Noise, 

signal 

overlap 

Hybrid 

Systems 
High Yes High Research, 

long-term 

studies 

Expensive, 

complex 

setup 
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Each method must be chosen according to the project goal — species-level 

biodiversity research or high-throughput abundance monitoring. 

4. Challenges and future directions 

Insect classification is highly complex due to fine-grained visual differences, 

high similarity of inter-class, and limited datasets (Wäldchen et al., 2018). 

Insect species often have very slight differences in wing shape, coloration, or 

size that are very hard to detect in low quality images or with motion blur in 

real-time scenarios. Solving these problems requires high-quality devices, 

effective augmentation techniques, and well-trained models. 

Future work should be focused on creating a large dragonfly dataset. Train the 

YOLO with this dataset and export the model to TensorFlow.js platform 

(Ultralytics, 2024). Furthermore, we could also add geolocation and other 

environmental metadata to create a full picture of the ecological panorama. 

Despite significant progress, challenges remain: 

 Data Availability: High-quality, annotated insect datasets are scarce. 

 Model Generalization: AI models trained in one region/species may 

not perform well in others. 

 Energy Consumption: Field-deployed systems need low-power 

solutions. 

 Standardization: Lack of protocols for comparing methods across 

studies. 

 Scalability: Need for scalable infrastructure that integrates sensor 

data, AI, and IoT. 

Future Research Should Focus On: 

 Developing large, open-source insect datasets. 

 Creating energy-efficient embedded devices. 

 Using transfer learning and unsupervised learning. 

 Building cloud-connected systems for real-time monitoring. 

 Combining audio, visual, and environmental data using multimodal AI 

(Smilkov et al., 2019; Gibb et al., 2019). 
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Conclusions 

Machine learning models used for insect counting will radically improve 

ecological research. It covers the gap of limitations created by traditional 

manual methods and opening new possibilities for real-time, scalable 

monitoring.  

Advanced Machine Learning technologies like YOLO and TensorFlow.js 

produce lightweight models and, in combination with hybrid multisensory 

systems, are the best solution (Redmon et al., 2016; Smilkov et al., 2019). For 

a more economically feasible solution we can avoid hybrid systems and focus 

more on one of the following technologies:  

1) Vision-Based Methods (Computer Vision)  

2) Optical Sensor Methods 

3) Bioacoustics Methods 

Another key factor to success is interdisciplinary collaboration. For a better-

tuned system, computer scientists must identify the most notable features of 

each species in collaboration with ecologists, engineers and data analysts. 

Based on that feature, the best solution can be implemented.  

From these significant improvements in machine learning, IoT, and sensor 

technologies, new opportunities emerge. With these opportunities, automated 

insect monitoring will become an essential tool in safeguarding biodiversity.  

Real-time image detection for dragonfly species based on TensorFlow.js offers 

a better approach in ecological monitoring and biodiversity research. By 

including such web-based technologies, researchers and citizens can access 

this tool without needing a high-end server infrastructure.  

This literature review has highlighted the main object detection models such 

as SSD, YOLO and COCO-SSD. With the rise of TensorFlow.js and 

improvements in model compression, the future of browser-based species 

detection is promising. This will also contribute to insect biodiversity studies. 

Continuous research and model training will be the key points to improving 

the detection process in the field.  
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