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Abstract

For better biodiversity conservation we must accurately monitor the insect
population. As we already know, insects play a key role as pollinators. This is
not, however, the only useful and crucial process in which they are involved.
Other useful processes include decomposition, pest control and of course,
being a food source for other species (Sanchez-Bayo & Wyckhuys, 2019). It is
very disturbing that insect populations are in decline globally. This decline
can lead to many environmental consequences, which will subsequently
translate into economic problems. Traditional methods of monitoring are
labor-intensive, time-consuming, and prone to error. This paper explores the
potential of automatic insect counting systems, reviewing the current state of
technologies, including visual, optical, acoustic, and hybrid sensor-based
methods. Special attention is given to Al-driven approaches such as YOLO
(Redmon et al., 2016) and TensorFlow.js, (Smilkov et al., 2019) which enable
real-time detection and classification in the field.

Key words: Biodiversity conservation, AI-Driven methods, YOLO (You Only
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Pérmbledhje

Pér njé ruajtie mé té miré té biodiversitetit, ne duhet té monitorojmé me saktési
popullatén e insekteve. Si¢ e dimé tashmé, insektet luajné njé rol ky¢ si
pjalmues. Megjithaté, ky nuk éshté i vetmi proces i dobishém dhe vendimtar
né té cilin ato jané té pérfshira. Procese té tjera té dobishme pérfshijné
dekompozimin, kontrollin e démtuesve dhe sigurisht, té qenit njé burim
ushqimi pér specie té tiera (Sanchez-Bayo & Wyckhuys, 2019). Eshté shumé
shqetésuese qé popullatat e insekteve jané né rénie globalisht. Kjo rénie mund
té ¢ojé né shumé pasoja mjedisore, té cilat mé pas do té pérkthehen né
probleme ekonomike. Metodat tradicionale té monitorimit kérkojné shumé
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puné, kérkojné kohé dhe jané té prirura pér gabime. Ky punim eksploron
potencialin e sistemeve automatike t¢ numérimit té insekteve, duke shqyrtuar
gjiendjen aktuale té teknologjive, duke pérfshiré metodat vizuale, optike,
akustike dhe hibride té bazuara né sensoré. Vémendje e vecanté i kushtohet
qasjeve té drejtuara nga IA si YOLO (Redmon et al., 2016) dhe TensorFlow.js,
(Smilkov et al., 2019) té cilat mundésojné zbulimin dhe klasifikimin né kohé
reale né terren.

Fjalé kyge: Ruajtja e biodiversitetit, metodat e drejtuara nga IA, YOLO
(shikoni vetém njé heré),; zbulimi né kohé reale.

Introduction

Insects can be spotted everywhere. One of their characteristics is the fact that
they are the most diverse group of animals on earth. We can count more than
a million known insects, and for sure there are many more to be discovered
out there (Sanchez-Bayo & Wyckhuys, 2019). They are fundamental to a
functional ecosystem. As natural pollinators, they help bio producers to
heavily rely on them for better food quality and quantity.

Despite all of these facts, many studies have already proven the sharp decline
in insect populations. The factors pertaining to this sharp decline are
numerous, among them we can mention loss of habitat, pesticide use and
climate change (Sanchez-Bayo & Wyckhuys, 2019). Monitoring their number
as well as diversity is fundamental and with this data we can better predict
agricultural trends, but also understand ecosystem health. There are also
traditional manual methods for monitoring insects that can still be used but
there are many limitations.

The main drawback is the requirement for taxonomic expertise, which is very
slow and extremely expensive. In addition, they are not feasible for large-scale
or long-term monitoring. Automatic insect counting offers a cost-effective
solution that can be easily expanded at low cost (Gibb et al., 2019). By
combining computer vision, acoustic sensors, and Al we can effectively
monitor insects in their environment at reasonable cost. This paper reviews the
best practice used for automatic insect counting. and highlights their
technological innovations, practical examples and future potential
improvements.
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1. Methods forautomatic insect counting
1.1 Vision-based methods (computer vision)

Computer vision systems rely on footage and deep learning models to detect
and classify insects. For different projects we already have high-resolution
cameras installed in the field often as part of camera traps, capturing images
or video sequences. Then, we analyze gathered data using object detection
algorithms. The most important object detection algorithms we will explore
during this paper are YOLO (Redmon et al., 2016; Redmon & Farhadi, 2016;
Redmon & Farhadi, 2018; Terven et al. 2023), SSD, and Faster R-CNN
(Girshick, 2015; Ren et al., 2016).

YOLO (You Only Look Once) models are highly effective. Thanks to their
speed and accuracy, they allow real-time detection in video streams. YOLO
models use convolutional neural networks (CNN5s) as part of their architecture.
Based on this architecture, YOLO offers impressive performance for features
like object detection. Its object detection algorithms are focused on shape,
color, and pattern detection (Redmon et al., 2016).

Furthermore, real-time detection systems must offer a balance between
accuracy and inference speed. In small devices where lack of resources is very
crucial, models must be as lightweight and efficient as possible. By using
TensorFlow.js, we could run those models in the browser. We can achieve high
performance in the browser thanks to WebGL, powering small devices with
real-time performance, and avoiding powerful server support (Smilkov et al.,
2019).

TensorFlow.js is a JavaScript library that allows for training in and deployment
of ML models in the browser and on Node.js. It supports a range of pre-trained
models and custom model imports via conversion from Keras or TensorFlow
Saved Model formats.

Advantages of computer vision:

. Enables species-level classification.
. Stores visual data for further analysis.
. Allows integration with Al for real-time monitoring (Redmon et al.,

2016; Smilkov et al., 2019).
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Limitations of computer vision:

. Dependent on lighting and weather conditions.
. Requires extensive labeled datasets for training.
. Struggles with overlapping insects or occlusion (Howard et al., 2017).

1.2 Optical sensor methods

These methods use simple infrared beam systems to detect insect passage.
When an insect crosses the beam, it causes a signal interruption, which is
recorded. This principle is used in light traps and tunnel-based counting
systems (Gibb et al., 2019).

Advantages of optical sensor methods:
. Inexpensive and energy-efficient.

. Suitable for remote and harsh environments.

Limitations of optical sensor methods:

. Cannot identify species or estimate size.

. Prone to false positives from debris or small particles.
1.3 Bioacoustics methods

All insects produce their characteristic noise. From the sound of their
wingbeats, to mating calls, or flight noises. Another modern technique is
bioacoustics, which identifies and counts insects. It uses microphones and
sound analysis techniques combined with Al algorithms. As different species
have different sound features, we can train ML models to adapt to only that
range of sound features to better target species (Gibb et al., 2019).

Advantages of bioacoustics methods:

. Effective for monitoring night-flying and hidden insects.
. Allow non-invasive observation over large areas.
Limitations of bioacoustics methods:

. Susceptible to ambient noise (wind, rain, animals).

. Difficulty distinguishing overlapping signals.
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1.4 Hybrid sensor systems

Each of the outlined methods have their advantages and disadvantages. So, to
improve accuracy and reliability we created a system that combines all of these
techniques. These hybrid systems combine multiple sensors—vision,
acoustics, and environmental. A typical implementation of hybrid combination
is AMMOD (Automated Multisensor station for Monitoring Of species
Diversity). Prototypes for so-called AMMOD stations are successfully set up
in German forests (AMMOD Project, 2022). These are equipped with sensors
for recording animal sounds and plant emissions, animal cameras for birds,
mammals and insects, and automated insect and pollen sample collectors for
monitoring by DNA barcoding. These recordings will be used to generate a
solid data pool that will enable the analysis of change and possible trends in
species richness and populations. For instance, we want to use the detected
species to determine their population and record the change over a long period
of time. The visual monitoring subsystems of AMMOD (visAMMOD) consist
of automated insect cameras for collecting images of nocturnal moths, which
are called moth scanners, and conventional wildlife camera traps for recording
observations of insects.

Advantages of hybrid sensor systems:
. Improved detection accuracy.
. Capable of species identification and count.

Limitations of hybrid sensor systems:

. High cost and complexity.
. Requires careful calibration and maintenance (AMMOD Project,
2022).

2. Use of AI and Data analytics

Artificial Intelligence has become a central point to automatic insect counting.
Advanced models like YOLOvVS, YOLOv12, SSD, Fast R-CNN, and
Detectron2 are used to detect insects in images and videos, and offer a high
accuracy (Ultralytics, 2024; Liu et al., 2016). These object detection models
are also very user friendly. Beyond their object detection they also draw
bounding boxes and classify species properly. Training these models requires
annotated datasets containing diverse images of insects under different
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conditions. Transfer learning where pre-trained models are fine-tuned on
insect datasets—helps overcome the challenge of limited data.

By using TensorFlow.js we can deploy this model directly in browser. This
way we empower not only researchers but also citizens to run Al models on
low-powered devices, such as smartphones and laptops without internet access
or cloud computing. (Smilkov et al., 2019).

2.1 YOLO (You Only Look Once)

Object detection is now a foundation task in computer vision. It offers
machines the feature to identify and localize objects within images or video
streams. Early algorithms like R-CNN and its derivatives have an acceptable
level of accuracy. However, YOLO (especially later versions) have a higher
accuracy rate. Furthermore, YOLO has a lower computational cost due to its
innovative architecture. The YOLO family achieved this reduction in
computational cost by treating object detection as a single regression problem
(Redmon et al., 2016). Also, YOLO evolved through multiple versions, each
bringing new features and substantial architecture and performance
improvements (Ultralytics, 2024).

2.2 YOLO Direct Export to TensorFlow.js

From 2024, Ultralytics enabled a feature to directly export the model to
multiple formats, including TensorFlow.js. This enhancement avoids the need
for the extra step needed previously to convert it to ONNX. So, the conversion
process became simpler, and the model structure is lightweight and optimized
for the browser environment (Ultralytics, 2024).

from ultralytics import YOLO

# Load YOLOvVS8/v11 model

model = YOLO("yolov8s.pt') # or yolovlls.pt
# Export directly to TensorFlow.js
model.export(format=""tfjs")

This command generates a TensorFlow.js-compatible model in the following
structure:
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The folder ‘yolov8n_tfjs’ that has two files ‘model.json’ and ‘groupl-
shard1ofl.bin’

Then we can load files into the browser using JavaScript:
const myModel = await tf.loadGraphModel('yolov8n_tfjs/model.json');

This feature enables real-time object detection via web interface using a
smartphone or webcam.

2.3 SSD (Single Shot MultiBox Detector)

Single Shot MultiBox Detector (SSD), introduced by Liu et al. (2016) and
improved for small object detection (Kang & Park, 2023; Shen et al., 2024;
Wang, et al., 2024) is another fast object detection framework like YOLO but
with notable architectural differences. Like YOLO, SSD performs detection in
a single forward pass of the network. However, SSD uses multiple feature
maps of different resolutions to detect objects of various sizes, improving the
detection of smaller objects—a common limitation in YOLOvI.

SSD defines a set of default bounding boxes (anchor boxes) for each feature
map location, with different aspect ratios and scales, allowing the model to
predict both object class scores and box refinements simultaneously.

2.4 COCO-SSD

COCO-SSD is another object detection model. Its architecture is based on
SSD and as a dataset it uses COCO (Common Objects in Context). The best
feature it has that it is lightweight. It is this feature that makes it the perfect
choice for browser-based inference using TensorFlow.js, thus making it ideal
for real-time applications on client devices without needing powerful server
processing (Howard et al., 2017).

Overall, COCO-SSD uses MobileNet as its backbone architecture, which
balances accuracy and speed well—ideal for web or mobile apps. It is being
used widely in real-time object detection tasks in educational and citizen
science applications.

2.5 Comparison between YOLO, SSD, and COCO-SSD

SSD and its COCO-SSD variant represent a parallel lineage to YOLO in the
object detection space. However, YOLO, with its latest versions, is dominating
the real-time detection market. On the other hand, SSD remains a very
competitive alternative, especially for lightweight and browser-based
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scenarios. Furthermore, COCO-SSD 1is a ready-to-use model for
TensorFlow.js applications, offering a perfect balance between performance
and portability. YOLO, SSD and all their variants create a solid tool for a large
range of deployment environments. We could use them in cutting edge server
environments in addition to web-browser environments (Howard et al., 2017).

Applications Include:

. Real-time insect monitoring in agricultural fields.

. Citizen science and educational tools.

. Rapid biodiversity assessments in remote locations.

Case Study: In a dragonfly monitoring project, YOLOvI11 converted to
TensorFlow.js enabled species detection and counting through a web interface
using the operator’s webcam. The inexpensive, browser-based tool allows
citizen scientists to contribute to biodiversity monitoring without specialized
hardware or software (Ultralytics, 2024).

3. Comparison of methods

Table 1. Methods comparison

Method Cost Species | Energy | Ideal For | Limitations
ID Use

Computer | Medium— | Yes Medium | Monitoring | Lighting

Vision High in species- | dependency,
level dataset size

Optical Low No Low Abundance | No species

Sensors tracking in | info, false
remote positives
areas

Bioacoustic | Medium | Partial Low Night Noise,

Sensors insects, signal
hidden spp. | overlap

Hybrid High Yes High Research, | Expensive,

Systems long-term | complex
studies setup
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Each method must be chosen according to the project goal — species-level
biodiversity research or high-throughput abundance monitoring.

4. Challenges and future directions

Insect classification is highly complex due to fine-grained visual differences,
high similarity of inter-class, and limited datasets (Wildchen et al., 2018).
Insect species often have very slight differences in wing shape, coloration, or
size that are very hard to detect in low quality images or with motion blur in
real-time scenarios. Solving these problems requires high-quality devices,
effective augmentation techniques, and well-trained models.

Future work should be focused on creating a large dragonfly dataset. Train the
YOLO with this dataset and export the model to TensorFlow.js platform
(Ultralytics, 2024). Furthermore, we could also add geolocation and other
environmental metadata to create a full picture of the ecological panorama.

Despite significant progress, challenges remain:

. Data Availability: High-quality, annotated insect datasets are scarce.
. Model Generalization: Al models trained in one region/species may
not perform well in others.

. Energy Consumption: Field-deployed systems need low-power
solutions.

. Standardization: Lack of protocols for comparing methods across
studies.

. Scalability: Need for scalable infrastructure that integrates sensor

data, Al, and IoT.
Future Research Should Focus On:

. Developing large, open-source insect datasets.

. Creating energy-efficient embedded devices.

. Using transfer learning and unsupervised learning.

. Building cloud-connected systems for real-time monitoring.

. Combining audio, visual, and environmental data using multimodal Al

(Smilkov et al., 2019; Gibb et al., 2019).
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Conclusions

Machine learning models used for insect counting will radically improve
ecological research. It covers the gap of limitations created by traditional
manual methods and opening new possibilities for real-time, scalable
monitoring.

Advanced Machine Learning technologies like YOLO and TensorFlow.js
produce lightweight models and, in combination with hybrid multisensory
systems, are the best solution (Redmon et al., 2016; Smilkov et al., 2019). For
a more economically feasible solution we can avoid hybrid systems and focus
more on one of the following technologies:

1) Vision-Based Methods (Computer Vision)
2) Optical Sensor Methods
3) Bioacoustics Methods

Another key factor to success is interdisciplinary collaboration. For a better-
tuned system, computer scientists must identify the most notable features of
each species in collaboration with ecologists, engineers and data analysts.
Based on that feature, the best solution can be implemented.

From these significant improvements in machine learning, 10T, and sensor
technologies, new opportunities emerge. With these opportunities, automated
insect monitoring will become an essential tool in safeguarding biodiversity.

Real-time image detection for dragonfly species based on TensorFlow.js offers
a better approach in ecological monitoring and biodiversity research. By
including such web-based technologies, researchers and citizens can access
this tool without needing a high-end server infrastructure.

This literature review has highlighted the main object detection models such
as SSD, YOLO and COCO-SSD. With the rise of TensorFlow.js and
improvements in model compression, the future of browser-based species
detection is promising. This will also contribute to insect biodiversity studies.
Continuous research and model training will be the key points to improving
the detection process in the field.
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