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Abstract 

The rise of massive, heterogeneous, and rapidly evolving datasets has 

amplified the need for intelligent visualization systems capable of supporting 

insight extraction, interpretability, and decision-making at scale. Traditional 

visualization approaches face limitations when confronted with high-

dimensional, unstructured, or streaming big data. Recent developments in 

artificial intelligence (AI), machine learning (ML), and analytical modeling 

offer new techniques to automate and enhance data visualization pipelines. 

This paper presents a comprehensive review of big data visualization 

augmented by AI and analytical techniques, emphasizing recent advances 

from 2022–2025, including generative AI for visualization automation, 

Explainable AI (XAI) integration, human–AI collaboration, and scalable ML-

driven frameworks. Challenges and future directions are also identified, 

linking technological progress with emerging needs in interpretability, 

scalability, and ethical visualization practices. 

Key words: Big Data, Data Visualization, Artificial Intelligence (AI), Machine 

Learning (ML). 

Përmbledhje: 

Në ditët e sotme, ndeshemi me një rritje të vazhdueshme, shumëllojshmëri dhe 

evolim me ritme të shpejta të të dhënave, që ka sjellë nevojën për sisteme 

inteligjente të vizualizimit, të cilat shërbejnë për të mbështetur nxjerrjen e 

njohurive, për të krijuar mundësinë për interpretim dhe në ndihmë të 

proceseve të vendimmarrjes në shkallë të gjerë. Metodat tradicionale të 

vizualizimit përballen me kufizime të konsiderueshme kur bëhet fjalë për të 

dhëna të mëdha me dimensione të larta, të pastrukturuara ose në rrjedhë të 
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vazhdueshme (streaming). Zhvillimet e fundit në fushën e inteligjencës 

artificiale (IA), Machine Learning (ML) dhe të modelimit analitik ofrojnë 

teknika të reja për automatizimin dhe përmirësimin e zinxhirëve të vizualizimit 

të të dhënave. 

Ky punim paraqet një rishikim gjithëpërfshirës të vizualizimit të të dhënave të 

mëdha të pasuruar me teknika të IA-së dhe analizës, duke vënë theksin në 

përparimet më të fundit të periudhës 2022–2025, përfshirë përdorimin e 

inteligjencës artificiale gjenerative për automatizimin e vizualizimit, 

integrimin e Inteligjencës Artificiale të Shpjegueshme (Explainable AI – XAI), 

bashkëpunimin njeri–IA dhe kornizat e shkallëzueshme të drejtuara nga ML. 

Gjithashtu, identifikohen sfidat kryesore dhe drejtimet e ardhshme të kërkimit, 

duke lidhur progresin teknologjik me nevojat në rritje për interpretueshmëri, 

shkallëzim dhe praktika etike në vizualizimin e të dhënave. 

Fjalë kyçe: Big Data, Vizualizimi i të dhënave, Inteligjenca Artificiale (IA), 

Machine Learning (ML). 

Introduction 

The unprecedented growth of data generated across diverse application 

domains, such as healthcare, smart cities, finance, cybersecurity, and social 

systems, has fundamentally reshaped the landscape of data analysis and 

decision-making. Modern data environments are no longer defined solely by 

their scale, but also by their complexity, heterogeneity, and dynamic nature. 

As data volumes continue to increase at an exponential rate, organizations and 

decision-makers face significant challenges in extracting meaningful, timely, 

and trustworthy insights using traditional analytical and visualization 

approaches. These challenges highlight the urgent need for more advanced and 

intelligent methods capable of supporting effective data understanding in 

increasingly complex analytical contexts (Neri et al., 2025; Wang et al., 2024). 

Within this evolving landscape, data visualization has emerged as a critical 

mechanism for bridging the gap between complex computational processes 

and effective analytical reasoning. Visualization enables analysts to explore 

data interactively, identify patterns and anomalies, and develop mental models 

that support reasoning and sense-making. However, the growing scale and 

multidimensionality of big data place substantial strain on conventional 

visualization techniques, which were primarily designed for static, low-
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dimensional, and well-structured datasets. As a result, traditional visualization 

tools often struggle to provide adequate support for understanding complex 

analytical outputs, particularly when advanced machine-learning and artificial 

intelligence (AI) models are involved. 

Recent research demonstrates a clear and growing trend toward the integration 

of visualization with AI-assisted systems in order to enhance decision-making, 

improve model interpretability, and reduce cognitive load for users. In this 

context, visualization is increasingly recognized not merely as a presentation 

tool, but as an integral component of the analytical process itself. Neri et al. 

(2025) emphasize that visualization now plays a central role in AI-assisted 

decision systems, functioning as a critical interpretability layer that connects 

computational models with analytical processes. By translating complex 

model behaviors and predictions into comprehensible visual representations, 

visualization supports transparency, trust, and informed decision-making in 

AI-driven environments (Neri et al., 2025). 

Similarly, advances in Explainable Artificial Intelligence (XAI) have 

significantly contributed to the evolution of visual analytics. XAI techniques 

aim to make machine-learning models more understandable by revealing the 

underlying logic, features, and decision pathways that drive model outputs. 

When combined with visualization, these techniques enable users to gain 

clearer and more intuitive explanations of model behavior, thereby enhancing 

both interpretability and usability. Yin et al. (2024) demonstrate that 

visualization-based XAI approaches play a crucial role in supporting user 

understanding, particularly in complex and high-stakes analytical scenarios 

where model transparency is essential. 

Beyond explainability, AI-driven methods are increasingly being employed to 

address scalability and adaptability challenges in big data visualization. 

Machine learning and analytical techniques can assist in tasks such as data 

abstraction, feature selection, anomaly detection, and automated visual 

encoding, allowing visualization systems to cope more effectively with large-

scale, high-dimensional, and streaming data. These AI-augmented 

visualization approaches not only improve system performance but also 

reduce the cognitive burden placed on users by guiding attention toward the 

most relevant patterns and insights.  
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Importantly, the integration of AI into visualization systems raises new 

questions related to collaboration between analytical models and users, system 

trust, and ethical responsibility. As analytical processes become increasingly 

automated, it is essential that visualization systems preserve transparency, 

interpretability, and user control over data-driven decisions (Neri et al., 2025; 

Yin et al., 2024). Recent scholarly work further emphasizes the importance of 

designing visualization systems that support clear interaction and analytical 

reasoning, rather than focusing solely on computational optimization (Beschi 

et al., 2025; Wang et al., 2024). 

Against this background, this paper examines how artificial intelligence and 

advanced analytical techniques are reshaping the field of big data 

visualization. 

The objective is to provide a comprehensive and up-to-date perspective on the 

evolving relationship between AI and visualization, with particular emphasis 

on scalability, interpretability, and effective support for data-driven analysis 

(Neri et al., 2025; Wang et al., 2024). To achieve this goal, the paper makes 

the following key contributions: 

i. A synthesis of the fundamental requirements and challenges associated 

with big data visualization in contemporary data-intensive environments 

ii. An overview of AI-augmented visualization approaches, including 

methods inspired by machine learning, XAI, and generative AI 

iii. An analysis of analytical techniques that support scalable, adaptive, 

and interactive visual systems 

iv. An integration of recent scholarly developments published between 

2022 and 2025, reflecting the current state of the field 

v. A research roadmap outlining open challenges and future directions 

for AI-driven visualization research 

By consolidating recent advances and identifying emerging trends, this work 

aims to contribute to a deeper understanding of how visualization and AI can 

be effectively combined to support sense-making, decision-making, and 

knowledge discovery in complex data environments. 
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Methodology of the Literature Review 

To guide the review, the following research questions (RQs) were defined, 

aligned with the study’s objective: 

RQ1: Why are traditional visualization approaches insufficient for insight 

extraction in big data environments? 

RQ2: What challenges does big data visualization face today? 

RQ3: Which AI-based techniques are currently integrated into big data 

visualization? 

RQ4: In which domains is AI-driven big data visualization most? 

These RQs are used for driving the extraction of related studies from different 

databases such as IEEE Xplore, ACM Digital Library, Scopus, Web of 

Science, and arXiv. Keywords included: “Big Data Visualization,” “AI-driven 

visualization,” “ML4VIS,” “Generative AI visualization,” “Explainable AI 

visualization.” Inclusion criteria: studies from 2022–2025, peer‑reviewed, 

English‑language, and directly focused on visualization and AI‑based 

analytical workflows. 

Each included study was reviewed to extract information regarding 

visualization purpose, AI technique used, scalability characteristics, and 

application domain. Findings were then synthesized thematically, and results 

are presented in the coming sections. RQ1, RQ2 and RQ3 are addressed in 

Section Literature Review: Thematic Analysis. RQ1 and RQ2 in Challenges 

and Foundational Requirements in Big Data Visualization. Additional cross-

cutting evidence related to RQ2 is synthesized in Synthesis and Identified 

Research Gaps. RQ3 is addressed primarily in AI-Enhanced Visualization 

Techniques, and is additionally supported by analytical insights discussed in 

Analytical Techniques in Support of Visualization Conclusions. RQ4 is 

addressed in Section Applications.  

Literature Review: Thematic Analysis 

1. Challenges and Foundational Requirements in Big Data Visualization 

The challenges in big data visualization stem from data characteristics and 

limitations in analytical processing. Addressing both dimensions is critical for 

the design of effective visual systems.  
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A. Scale and Complexity 

The scale and complexity of big data fundamentally reshape the way 

visualization systems must operate. Unlike traditional datasets, which can 

often be processed and displayed as a whole, big data arrives in massive 

volumes and at high speeds, quickly overwhelming conventional visualization 

tools. As a result, modern systems increasingly depend on distributed 

architectures that support parallel computation, allowing large datasets to be 

processed efficiently across multiple resources. In parallel, incremental and 

progressive rendering techniques enable analysts to begin exploring partial 

visual results while computations are still ongoing, rather than waiting for a 

complete and often time-consuming process to finish (Bikakis et al., 2025; 

Wang et al., 2024). 

Maintaining responsiveness in such environments is not merely a technical 

concern, but a prerequisite for effective data interaction and analysis. To this 

end, approximation, aggregation, and sampling techniques play a crucial role 

by reducing computational load while preserving the most meaningful 

structures and trends within the data. These methods allow analysts to work 

with simplified yet informative representations, supporting faster interaction 

without significantly sacrificing analytical accuracy (Cuzzocrea, 2025). In 

many real-world scenarios, this balance between precision and performance is 

essential for sustaining analytical flow and user engagement. 

Equally important is the ability to process and visualize data in real time. In 

domains such as finance, healthcare, or urban analytics, insights lose value if 

they arrive too late. Real-time visualization enables users to interact 

dynamically with evolving data streams, adjust their focus as conditions 

change, and make informed decisions when timing is critical (Ye et al., 2024). 

Ultimately, the core challenge of scale and complexity lies not in rendering 

large datasets alone, but in supporting meaningful and continuous interaction 

with them. Visualization systems must enable users to explore patterns, shift 

between overview and detail, and respond to emerging insights without 

cognitive overload or technical friction. By integrating distributed 

computation, progressive visualization, approximation techniques, and real-

time processing, contemporary systems seek to align computational 

capabilities with analytical requirements. This integration ensures that, even 

in the presence of massive and rapidly changing data, the analytical process 
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remains interpretable, responsive, and effective (Neri et al., 2025; Yin et al., 

2024). 

B. Cognitive and Interaction Constraints 

Perceptual and cognitive bandwidth is inherently limited, placing natural 

constraints on the amount of information that can be effectively processed at 

any given time. As datasets grow in size, complexity, and dimensionality, 

modern visual analytics systems must be carefully designed to respect these 

cognitive limits while still enabling deep insight discovery. To address these 

challenges, advanced systems incorporate strategies such as clutter reduction, 

which minimizes unnecessary visual elements and highlights relevant 

information; adaptive abstraction, which dynamically simplifies or aggregates 

data to match the user’s focus; multi-level detail exploration, allowing users 

to seamlessly drill down from overview representations to granular data 

points; and guided or intelligent navigation, which provides contextual cues 

and recommendations that support effective exploration and decision-making 

(Neri et al., 2025; Wang et al., 2024). 

C. High-Dimensionality and Heterogeneity 

Bikakis et al. (2025) emphasize that visual analytics systems in the AI era must 

not only present data efficiently but also actively mitigate cognitive overload. 

They argue that future systems should incorporate interactive mechanisms that 

are aligned with analytical reasoning processes, enabling analysts to maintain 

situational awareness, draw accurate conclusions, and remain in control of the 

analysis workflow. By designing systems that are cognitively aware and 

interaction-aware, researchers and practitioners can ensure that even highly 

complex and high-dimensional datasets remain interpretable, actionable, and 

suitable for reliable analytical reasoning and decision-making processes 

(Beschi et al., 2025; Cuzzocrea, 2025; Yin et al., 2024). These challenges are 

further amplified in the presence of heterogeneous and multimodal data, where 

numerical, textual, visual, and temporal features must be analyzed and 

integrated within a unified analytical framework. For example, analytical tasks 

that combine transactional records, textual reports, spatial information, and 

temporal signals illustrate how heterogeneity increases both analytical 

complexity and visualization design challenges. 
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Ultimately, the goal is to create visualization environments that strengthen 

decision-making processes, rather than simply display larger volumes of data. 

By carefully integrating computational intelligence with principles of 

perception and cognition, modern visual analytics can transform 

overwhelming streams of information into meaningful, interpretable, and 

actionable insights, supporting more confident and effective analytical 

reasoning (Neri et al., 2025; Ye et al., 2024).  

2. AI - Enhanced visualization techniques 

AI significantly expands what visualization systems can achieve, enabling 

automation, personalization, and advanced pattern recognition. 

A. Machine Learning for Visualization Recommendation 

Visualization recommendation systems have traditionally relied on heuristics, 

grammar-based rules, or pre-defined templates to guide the selection of visual 

encodings and chart types. While effective in some contexts, these rule-based 

approaches are inherently limited, as they cannot fully adapt to the diverse, 

high-dimensional, and dynamic nature of modern datasets (Bikakis et al., 

2025; Wang et al., 2024). In contrast, machine learning (ML)-driven 

visualization recommendation systems offer a more flexible and adaptive 

solution by learning directly from large repositories of datasets, prior 

visualization examples, and user interaction patterns (Cuzzocrea, 2025; Ye et 

al., 2024). By leveraging historical data and observing how users engage with 

visualizations, ML models can identify patterns that are not explicitly captured 

by heuristic rules (Neri et al., 2025). 

ML-based visualization recommendation systems typically perform a range of 

advanced tasks, including: 

i. Automated encoding selection, where the system predicts the most 

suitable visual representation for different types of data attributes and 

relationships (Yin et al., 2024). 

ii. Chart type recommendation, suggesting the most effective 

visualization format based on data characteristics and analytical tasks (Ye et 

al., 2024). 

iii. Perceptual optimization, ensuring that visualizations adhere to 

established perceptual principles, such as color distinguishability, shape 
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salience, and visual hierarchy, thereby improving interpretability and 

comprehension (Bikakis et al., 2025). 

iv. Task-context adaptation, dynamically adjusting visualizations to the 

specific analytical goals, user expertise, and cognitive load (Cuzzocrea, 2025; 

Wang et al., 2024). 

As machine learning models continue to learn from interaction data and 

feedback, they become increasingly capable of generating visualizations that 

are intuitive, effective, and well aligned with analytical objectives. Unlike 

rule-based systems, which operate within fixed and predefined constraints, 

ML-driven approaches support personalization, adaptability, and continuous 

refinement over time. As a result, these systems enhance efficiency and 

accuracy in data exploration while also supporting deeper understanding, 

sustained engagement, and greater confidence in decision-making across 

complex and high-dimensional datasets (Neri et al., 2025; Yin et al., 2024). 

B. Generative AI for Visualization Automation 

Recent advances in Generative Artificial Intelligence (GenAI) have 

introduced new possibilities for automating key stages of the data visualization 

pipeline. Models based on transformer architectures and diffusion processes 

are increasingly applied to tasks that traditionally required extensive manual 

design and domain expertise. These models are capable of learning complex 

patterns from large collections of visual and semantic data, enabling the 

automatic generation and refinement of visual representations at scale. 

GenAI techniques can support multiple stages of visualization construction, 

including data transformation, visual encoding selection, layout generation, 

and narrative structuring. Ye et al. (2024) present a comprehensive analysis of 

how generative models can be integrated into visualization workflows to 

reduce manual effort and improve consistency across visual outputs. By 

leveraging learned representations of data semantics and visual conventions, 

these systems can automatically map data attributes to appropriate visual 

forms and generate layouts that follow established design principles. 

Key capabilities enabled by GenAI include text-to-visualization generation, 

where natural language specifications are translated into structured visual 

representations; style transfer techniques that adapt the aesthetic properties of 

visualizations to specific contexts or design guidelines; and automated data 
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summarization, which identifies salient patterns and trends suitable for visual 

depiction. In addition, generative models can produce contextual annotations 

and explanatory elements, supporting clearer interpretation of visual outputs. 

Conversational and iterative refinement mechanisms further allow 

visualizations to be progressively adjusted based on feedback, enabling 

flexible exploration of alternative representations (Neri et al., 2025; Ye et al., 

2024). Khan et al. (2025) systematically evaluated the ability of large language 

models (LLMs) to autonomously generate visualizations from natural 

language specifications. The study showed that while most LLMs can generate 

simple charts, they struggle to produce more complex visualizations. 

Beyond individual visual artifacts, GenAI also contributes to scalability and 

reproducibility in visualization systems. Automated pipelines can generate 

consistent visualizations across large and evolving datasets, reducing 

variability introduced by manual design decisions. This is particularly relevant 

in data-intensive domains where visualizations must be frequently updated or 

adapted to new data conditions. Furthermore, by abstracting complex design 

operations into high-level specifications, GenAI-based systems expand the 

range of users who can effectively create and modify visualizations without 

requiring advanced technical or visualization expertise. 

Despite these advantages, challenges remain regarding transparency, 

controllability, and validation of generated visual outputs. Ensuring that 

automated visualizations accurately reflect underlying data and adhere to 

analytical requirements is essential, particularly in decision-critical 

applications. As generative approaches continue to mature, their integration 

with interactive and analytical visualization systems is expected to play an 

increasingly central role in managing complexity and automation within large-

scale data analysis environments (Ye et al., 2024; Yin et al., 2024). 

C. Explainable AI (XAI) in Visual Analytics 

As machine learning models continue to increase in complexity and adoption, 

the need for interpretability and transparency has become a critical 

requirement. Many high-performing models, particularly deep learning 

architectures, operate as black boxes, offering limited insight into how inputs 

are transformed into outputs. In this context, Explainable Artificial 

Intelligence (XAI) aims to make model behavior more transparent by exposing 

internal mechanisms, decision logic, and sources of uncertainty. Visualization 
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plays a central role in XAI by translating abstract model explanations into 

interpretable visual forms that can be systematically analyzed. 

Visual analytics systems support XAI by presenting multiple explanatory 

elements, including feature importance scores, attention maps, decision paths, 

and uncertainty indicators. Feature importance visualizations highlight which 

input variables contribute most significantly to model predictions, enabling 

comparative analysis across instances or model versions. Attention maps 

provide insight into which parts of the input data are emphasized during 

inference, particularly in neural network models applied to text, images, and 

multimodal data. Decision path visualizations reveal how intermediate rules 

or conditions lead to final predictions, while uncertainty representations 

communicate confidence levels and potential risks associated with model 

outputs. 

Integrating these explanatory components within interactive visual analytics 

environments enables systematic exploration of model behavior across 

different data subsets, time periods, or parameter settings. Yin et al. (2024) 

demonstrate that visualization-driven XAI techniques can improve the 

reliability and acceptance of machine learning–based decision support 

systems, especially in high-stakes domains such as healthcare and finance, 

where accountability and risk assessment are essential. By making model 

reasoning more explicit, XAI-based visualizations support error detection, 

bias identification, and performance comparison among alternative models. 

Beyond individual explanations, XAI-enriched visual analytics contributes to 

the evaluation and governance of machine learning systems. Visualization 

allows stakeholders to assess consistency, robustness, and fairness by 

comparing explanations across multiple predictions and scenarios. This 

capability is particularly important in regulated environments, where 

compliance and auditability require transparent documentation of algorithmic 

behavior (Neri et al., 2025). 

Overall, the integration of XAI with visual analytics provides an effective 

framework for addressing the opacity of complex machine learning models. 

By combining explanatory techniques with interactive visualization, these 

systems reduce the gap between algorithmic complexity and analytical 

interpretability, enabling more informed assessment, validation, and 
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deployment of data-driven decision-making systems (Wang et al., 2024; Yin 

et al., 2024). 

D. User-Oriented AI Interactive Visualization Systems 

Recent studies highlight the importance of user-oriented AI principles in 

visualization systems. Beschi et al. (2025) demonstrate how AI-driven end-

user development (EUD) approaches enable analysts to generate 

visualizations through natural language specifications, iterative refinement, 

and guided workflows (Beschi et al., 2025). 

While ML-based recommendation systems, generative AI, and XAI 

techniques address different stages of the visualization pipeline, they are 

largely complementary rather than competing approaches. ML-based methods 

primarily support encoding selection and interaction adaptation, generative 

models focus on automation and visual synthesis, and XAI techniques enhance 

interpretability and model transparency. Understanding the trade-offs between 

automation, control, and explainability remains an important consideration 

when integrating these approaches into unified visualization systems. 

3. Analytical techniques in support of visualization conclusions 

Visualization is only the final layer; robust analytical techniques support every 

preceding stage. 

A. Distributed Data Processing Frameworks 

Big data visualization relies on distributed computation infrastructure: Apache 

Spark, Apache Flink, Dask, GPU-accelerated frameworks 

These tools support high-speed aggregation, streaming analytics, and 

incremental computation. 

B. Data Reduction and Sampling Techniques 

Maintaining interactivity in large-scale visualization systems requires 

reducing data complexity while preserving essential structural patterns. 

Common strategies include density-aware sampling, machine learning–based 

clustering, hierarchical aggregation, and scalable dimensionality-reduction 

techniques. These approaches enable efficient representation of large datasets, 

supporting responsive exploration without excessive computational overhead. 



123                                                                                                                     JNS 38/2025 

 

 

Cuzzocrea (2025) presents a hybrid framework that combines ML-driven 

aggregation with visual analytics to handle large sequential datasets, such as 

epidemiological time series. The framework demonstrates how integrated data 

reduction and visualization techniques can maintain analytical relevance while 

ensuring scalability and performance (Cuzzocrea, 2025). 

C. Predictive Modeling and Pattern Mining 

The integration of predictive modeling and pattern mining with visualization 

enhances the ability to identify trends, anticipate events, and detect anomalies 

across data-intensive domains. In cybersecurity, predictive analytics supports 

early detection of anomalous network behavior and potential threats, while 

visualization translates model outputs into interpretable patterns that can be 

examined over time. In supply chain management and finance, forecasting 

models are combined with visual representations to support demand 

prediction, risk assessment, and market trend analysis. Similarly, in 

healthcare, predictive diagnostics benefit from visual analytics that present 

model-driven insights related to disease progression, patient risk, and 

treatment outcomes. In these contexts, artificial intelligence performs large-

scale pattern detection, while visualization serves to communicate and 

contextualize analytical findings in a clear and actionable manner (Neri et al., 

2025; Wang et al., 2024). 

Despite growing adoption, standardized evaluation metrics and benchmarking 

frameworks for AI-driven visualization systems remain limited, highlighting 

the need for systematic assessment of scalability, interpretability, and 

analytical reliability across different application contexts. 

4. Synthesis and Identified Research Gaps 

Although recent studies demonstrate meaningful advances in AI-augmented 

visualization, the literature remains fragmented and reveals several conceptual 

and technical gaps. Existing work lacks standardized evaluation frameworks 

for AI-generated visualizations, multimodal benchmarking datasets, support 

for real-time, decision-critical visual systems, systematic integration of 

human–AI co-design processes, and structured consideration of ethics-aware 

visualization practices. These insights form the foundation for the research 

roadmap and future directions outlined in the following section. 
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Future directions 

Future work should prioritize multimodal AI visualization pipelines, 

standardized testing protocols, automated insight‑discovery validation, and 

ethical AI‑visual governance frameworks. Tighter integration of generative 

AI with human‑controlled oversight is expected to become essential. 

Applications 

Recent advances in big data visualization, visual analytics, and AI-driven 

techniques have significantly expanded the range of real-world applications 

where large, complex datasets must be explored, interpreted, and acted upon. 

Visualization systems increasingly serve as a critical interface between 

advanced computational models and decision-making processes, enabling 

analytics to be translated into operational insights for end-users (Ozturk & 

Elmasry, 2024). At the same time, these developments point toward new 

research directions, emphasizing scalability, automation, interpretability, and 

responsible AI use, while big-data visualization continues to broaden its 

application domains, increasingly prioritizing practical deployment and future 

development trends (Ouyang, 2024). 

In healthcare and bioinformatics, visualization plays a central role in 

supporting data-intensive tasks such as epidemic monitoring, genomic 

analysis, and patient risk modeling. Biomedical datasets are often high-

dimensional, heterogeneous, and temporally evolving, making them difficult 

to analyze using traditional methods. Visual analytics enriched with 

explainable AI techniques enables structured exploration of model outputs, 

helping practitioners examine influential variables, compare patient cohorts, 

and assess uncertainty in predictive models (Neri et al., 2025; Yin et al., 2024). 

In the financial domain, visual analytics systems are widely applied to fraud 

detection, market surveillance, and risk assessment. Large-scale transaction 

data and algorithmic trading systems generate complex patterns that require 

continuous monitoring. Visualization dashboards enhanced with 

explainability mechanisms support regulatory compliance by exposing model 

behavior, highlighting anomalous activities, and enabling systematic auditing 

of automated decisions (Wang et al., 2024). 
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Visualization is frequently embedded as part of AI analytical pipelines across 

industries, supporting interpretation and operational decision-making (Xia & 

Wei, 2024). 

Smart city environments represent another prominent application area. Urban 

sensing infrastructures and IoT networks generate continuous streams of 

spatiotemporal data related to traffic flow, energy consumption, 

environmental conditions, and public safety. Real-time visualization systems 

allow analysts to monitor evolving conditions, identify emerging issues, and 

evaluate the impact of policy interventions. Scalability and low-latency 

processing are essential in this context, particularly as data sources and sensor 

deployments continue to expand (Bikakis et al., 2025). In their study, Kulkarni 

et al. (2023) demonstrate how information extracted from data collected via 

roadside Bluetooth scanners can be processed using big-data analytics and 

subsequently presented through visualizations and tabular summaries within 

the R Studio environment. Their work illustrates the potential of sensor-based 

data acquisition, combined with analytical and visualization techniques, to 

support more effective road-traffic management and inform future mobility 

planning. 

In cybersecurity, machine learning–based anomaly detection techniques are 

increasingly integrated with visualization to support threat analysis and 

incident response. Raw detection outputs become actionable through visual 

summaries that reveal network behavior, attack patterns, and temporal trends. 

By combining automated detection with interactive visual exploration, 

analysts can more effectively investigate suspicious events and prioritize 

mitigation efforts (Cuzzocrea, 2025). 

Looking ahead, several directions are expected to shape the future of AI-

enhanced visual analytics. One key trend is the development of tighter 

collaboration between analytical models and interactive visualization systems. 

Iterative feedback loops, supported by generative AI, are expected to enable 

dynamic refinement of visual representations as analytical goals evolve, 

supporting more flexible and adaptive workflows (Ye et al., 2024). 

Another important direction involves the visualization of multimodal and 

heterogeneous data. As analytical tasks increasingly rely on the integration of 

text, images, audio, temporal signals, and structured records, there is a 

growing need for unified visualization frameworks that can coherently 
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represent mixed data types without sacrificing analytical clarity (Wang et al., 

2024). 

Automated insight discovery is also likely to become more prominent. Early-

stage research investigating AI-assisted visualization highlights increasing 

interest in automating visual encoding and insight discovery (Saber, 2024). AI 

systems are increasingly capable of identifying anomalies, suggesting 

hypotheses, and selecting relevant visual views automatically. While these 

capabilities offer substantial efficiency gains, they also introduce the need for 

rigorous evaluation methods to ensure reliability, relevance, and analytical 

validity (Neri et al., 2025). 

Finally, ethical considerations are emerging as a foundational aspect of future 

visualization research. Issues related to bias, fairness, transparency, and data 

provenance are particularly critical in high-stakes application domains. 

Addressing these challenges requires not only algorithmic solutions but also 

visualization techniques that make assumptions, limitations, and uncertainties 

explicit within analytical workflows (Beschi et al., 2025). 

Future research should focus on defining evaluation protocols for automated 

visualization systems, developing robust methods for multimodal data 

integration, and establishing ethical guidelines for AI-driven analytical 

workflows. Addressing these directions will be essential for ensuring that AI-

enhanced visual analytics systems remain reliable, transparent, and applicable 

in high-stakes domains. 

Conclusion 

Big data visualization is entering a stage in which artificial intelligence, 

machine learning, and advanced analytical techniques have become integral 

to effective data analysis rather than optional enhancements. Recent research 

between 2022 and 2025 indicates a clear transition toward visualization 

approaches that combine automation, interpretability, and adaptive analytical 

support. AI-driven and generative visualization techniques offer promising 

mechanisms for accelerating insight discovery by highlighting relevant 

patterns and reducing the effort required to explore large and complex datasets 

(Cuzzocrea, 2025; Ye et al., 2024). In parallel, advances in explainable and 

interpretable visual analytics provide mechanisms for examining the behavior 
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of complex models, supporting transparency, accountability, and informed 

decision-making (Neri et al., 2025; Yin et al., 2024). 

Despite this progress, significant challenges remain. Scalability continues to 

constrain visualization systems as data grows in volume, velocity, and 

heterogeneity, particularly in multimodal and streaming contexts (Bikakis et 

al., 2025; Wang et al., 2024). A recent implementation example is provided 

by Poornima et al. (2025), who present a scalable architecture for real-time 

sentiment analysis of YouTube live-chat data using Apache Kafka, Spark 

Structured Streaming, and Grafana dashboards, illustrating both the potential 

of real-time analytics and the technical complexity of deploying such systems 

in practice. Effectively integrating heterogeneous data sources while 

preserving analytical clarity remains an open research problem, as does 

ensuring that automated visualization techniques remain reliable and 

understandable. Ethical considerations, including bias mitigation, fairness, 

and responsible deployment of AI-driven visual analytics, are also becoming 

increasingly central to both research and real-world applications (Beschi et al., 

2025). 

Looking ahead, continued advances in AI-enhanced visual analytics are 

expected to further reshape data-driven decision-making across a wide range 

of domains. The integration of scalable computational methods with 

interpretable and adaptive visualization techniques offers a pathway toward 

systems that not only present data effectively but also support rigorous 

analysis and collaborative decision processes. As AI and ML technologies 

continue to mature and ethical frameworks become more clearly defined, AI-

augmented visual analytics is likely to play an increasingly important role in 

transforming complex data into actionable insights across diverse application 

areas. 
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